
Technische 
Universität 
München

Binary Rewriting at Runtime for Efficient 
Dynamic Domain Map Implementations

3rd CHIUW Workshop, Chicago, May 27, 2016

Josef Weidendorfer, Jens Breitbart
Chair for Computer Architecture

Department of Informatics, Technical University of Munich



Technische 
Universität 
München

The beginning...

We were looking for an abstraction of data distribution that

• allows for automatic load balancing
• could handle nodes failure
• and is transparent to the user

But performance implications of our concepts were 
unsatisfactory.



Technische 
Universität 
München

Our solution: binary rewriting at runtime

• Language / programming model independent
• Directly parse instructions in binary form
• ISA dependent, but there are far less ISAs

• Use runtime information to optimize code
• Data distribution among nodes
• Memory layout

 



Technische 
Universität 
München

Our API

• Configuration based on C calling convention (ABI)
• E.g.: „rewrite f into version with parameter 2 == 100“

• Returns a function pointer usable as drop-in-replacement
• If the condition is true
• Otherwise use the original function

• In case rewriting fails we return the original function
• No error handling required

 



Technische 
Universität 
München

Our API

• Rewrite function mm_kernel() for a constant size



Technische 
Universität 
München

Initial Chapel Experiments

• We manually modified the generated C code

• Specialized accesses to data distributed with cyclic 
compiled for multiple locales

Specialized for a single locale:

→ 54% of instructions removed for array accesses

 



Technische 
Universität 
München

Available

• Currently in prototyping phase
• Only parts of the x86_64 ISA
• We add new instructions as they are required

• Source code is available on GitHub:

https://github.com/lrr-tum/dbrew

Please give it a try and report any issues you find

 

https://github.com/lrr-tum/dbrew


Technische 
Universität 
München

Feedback welcome!

• Our experiments by itself is obviously not very useful…

• Do you need a component to specialize code at runtime?

• Should something like that be a language feature?


