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The beginning...

We were looking for an abstraction of data distribution that

• allows for automatic load balancing
• could handle nodes failure
• and is transparent to the user

But performance implications of our concepts were 
unsatisfactory.
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Our solution: binary rewriting at runtime

• Language / programming model independent
• Directly parse instructions in binary form
• ISA dependent, but there are far less ISAs

• Use runtime information to optimize code
• Data distribution among nodes
• Memory layout
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Our API

• Configuration based on C calling convention (ABI)
• E.g.: „rewrite f into version with parameter 2 == 100“

• Returns a function pointer usable as drop-in-replacement
• If the condition is true
• Otherwise use the original function

• In case rewriting fails we return the original function
• No error handling required
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Our API

• Rewrite function mm_kernel() for a constant size
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Initial Chapel Experiments

• We manually modified the generated C code

• Specialized accesses to data distributed with cyclic 
compiled for multiple locales

Specialized for a single locale:

→ 54% of instructions removed for array accesses
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Available

• Currently in prototyping phase
• Only parts of the x86_64 ISA
• We add new instructions as they are required

• Source code is available on GitHub:

https://github.com/lrr-tum/dbrew

Please give it a try and report any issues you find

 

https://github.com/lrr-tum/dbrew
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Feedback welcome!

• Our experiments by itself is obviously not very useful…

• Do you need a component to specialize code at runtime?

• Should something like that be a language feature?


