
Chapel on ARM
Brian Guarraci

Twitter, Inc

Chapel on ARM

• Getting Chapel running on ARM

• Building a Chapel app and evaluating it

• Chapel as a Service Oriented Architecture

Why ARM?
• Because you can?

• Cheap and low-power (~5W)

• GPU support

• ARM boards are the new commodity server

• True parallelism on your desktop

Chapel on ARM
• Generally “just-works”

• A couple config tweaks:

• export CHPL_TASKS=fifo

• export CHPL_TARGET_ARCH=native

• GASNET + UDP

• Simple deployment and cluster operation

Goal
• Build a practically useful system with Chapel that’s efficient enough

to make use of ARM systems, but could scale to traditional
hardware

• 1-2GB RAM

• Gigabit network

• Storage

• Remote via HDFS / NAS

• Local Storage via SSD

• Viable as an online service (e.g. website infrastructure)

Chapel on ARM

• Getting Chapel running on ARM

• Building a Chapel app and evaluating

• Chapel as a Service Oriented Architecture

Application Goal
• Simple distributed inverted-index search engine

• Replicate basic behavior of Twitter search engine

• Exercise ARM cluster with millions of Tweets

• Can index new content while serving reads

• Basic boolean expression query language

• Easy to deploy on a cluster

Lessons
• Idea: Use classes to represent data structures (aka Java bad habits)

• Problem:

• Chapel feels optimized for a top-level data structures and class
instantiations are heavy weight by comparison

• Heap management incurs overhead, esp. remote allocations

• Nesting classes has some issues

• Solution:

• Minimize classes when top-level data structures will do

• Use Chapel’s module system like Objective-C’s categories

Lessons
• Idea: Use an associative array with values allocated on hash-partitioned

locales

• Problems:

• Too naïve, though incredibly simple if it worked

• Slow due constantly sync’ing hash-table across locales

• Threading issues: domains are thread-safe, but underlying arrays are not

• Solutions:

• Use ReplicatedDist to create locale “singletons”

• Use local keyword to catch non-local memory access

Lessons
• Idea: Use a per-locale hash-table with string keys

• Problems:

• hit string performance issue

• resizing hash-table is non-trivial without locking

• pointer operations are not atomic

• memory allocations are not cheap (aka Java ruins your mind)

• non-trivial serialization for later use as a memory mapped file

• Solutions:

• use atomic integers to hold index pointers into object pools

• incrementally allocate memory for document id posting lists

Lessons
• Idea: Load index data from local file into each locale

• Problems:

• Locales appear to be assigned to machines non-
deterministically

• Boiler plate begin / wait code for doing data loads

• Solution:

• Use HDFS or other centralized storage

• Ideally, have a built-in Chapel mechanism for distributed data
loads

Lessons
• Idea: scatter-gather queries across locales

• Problems:

• Assembling results from each locale is slow due
to reallocating result array

• Not optimally serialized requiring final ‘reduce’
phase

• Solution: use Chapel’s parallel iterators

Chearch: Chapel + Search
• Open source at http://chearch.pw (Chearch Pew)

• Lock-free, using integers which are cheap, fast, support atomic
operations

• String-free, using integer indices into an external string table

• Boolean queries via CHASM (Chearch Assembly)

• Stack language that dynamically constructs nested iterator AST

• AST capable of processing query with minimal memory
allocation

• 16M documents (e.g. Tweets) per segment (~1GB / segment)

http://chearch.pw

ARM-specific optimizations
• Use 32-bit integers when possible

• Use appropriately sized memory pools

• Use a single 64-bit integer to represent each
intermediate query result

• no heap to manage

• bit operations are fast

• Minimize memory footprint by externalizing everything

0 / X

Term Hash Table
TermEntry

Object Pool

2^1

2^4

2^7

2^11

Document Id
Object Pool
with buckets

Inverted Index Reference System

var termHashTable: [0..#termHashTableSize] atomic TermEntryPoolIndex;

class TermEntry {
 // reference to external string table
 var term: Term;

 // pointer to the last document id in the doc id pool
 var lastDocIdIndex: atomic DocIdPoolIndex;

 // next term in the bucket chain
 var next: atomic TermEntryPoolIndex;
}

Profiling: Setup
• Synthetic data of 1.5MM Tweets of known

distribution across cluster

• Common query patterns that exercise:

• local queries

• single remote locale queries

• scatter-gather queries (AND, OR)

Profiling: Hardware
• Raspberry Pi 2 rev B (4 locales)

• quad-core ARM Cortext-A7 @ 900Mhz

• 1GB RAM

• Jetson TK1 (16 locales)

• quad-core ARM Cortex-A15 @ 2Ghz + GPU

• 2GB RAM

• EC2 m3.large (4 locales)

• EC2 m3.xlarge (8 locales) [high network allocation]

• EC2 c3.2xlarge (4 locales) [compute optimized, high network allocation]

m
ic

ro
se

co
nd

s

0

125

250

375

500

c3.2xlarge m3.large m3.xlarge Pi TK1

Local Query

Single Locale Remote Query
m

ic
ro

se
co

nd
s

0

75000

150000

225000

300000

Query Result Size

0 128 256 384 512 640 768 896

m3.xlarge c3.2xlarge m3.large Pi TK1

m
ic

ro
se

co
nd

s

0

125000

250000

375000

500000

c3.2xlarge m3.large m3.xlarge pi tk1

Single Term Query (2 locales)

m
ic

ro
se

co
nd

s

0

4000

8000

12000

16000

c3.2xlarge m3.large m3.xlarge pi tk1

AND Query (4 locales)

m
ic

ro
se

co
nd

s

0

225000

450000

675000

900000

c3.2xlarge m3.large m3.xlarge pi tk1

OR Query (2 locales)

m
ic

ro
se

co
nd

s

0

2750

5500

8250

11000

c3.2xlarge m3.large m3.xlarge pi tk1

Empty Result Query (4 locales)

$0.000

$0.075

$0.150

$0.225

$0.300

c3.2xlarge m3.xlarge m3.large TK1 Pi
$0.005$0.023

$0.086

$0.172

$0.248

Cost / Hour / Year

Conclusions / Future Work
• Deployment was trivial on different architectures

• ARM systems perform pretty well

• More investigations required

• High-CPU utilization remains after indexing

• Random result sizes for parallel queries

• Parallel query optimization

Chapel on ARM

• Getting Chapel running on ARM

• Building a Chapel app and evaluating it

• Chapel as a Service Oriented Architecture

Chapel as a Service
• Chapel app as-a-service

• Exposes a set of methods that represent the service’s
functionality

• Accepts TCP requests that execute these methods

• Serves multiple simultaneous requests from different clients

• App will be long-running with different, and unknown execution
patterns

• Concurrency safety must be generalized

• Unpredictable resource utilization now a concern

Locale Wish-list

• Fault tolerance via “virtual” locales

• Constraint satisfaction (degrees of success)

• Explicit support for service abstraction

Fault Tolerance
• Virtual Locales

• Through config, specify which locales replicate, or
compose, a virtual locale

• Have ability to lose / rejoin a replicant locale

• Rebuild a locale when it rejoins by replicating data
from peers

• Chapel application doesn’t die when a locale
disappears

Success as a Continuum
• Service-oriented-architectures are constraint-satisfaction-

architectures

• Service clients deal with degrees of success by adapting to
response scenarios: timeouts, errors, and partial results

• Services may be clients to other services themselves, which
requires defining success with constraints

• Time is the most common resource constraint

• Clients can control amount of time willing to wait

• Servers can add more machines to reduce latency

Success as a Continuum
• Ability to model a function as a dependency directed-graph

allows for fine-grain constraint satisfaction

• Each node is a function with a single output and explicit
optional and required dependencies

• if a required dependency can’t be satisfied then the
dependent node can’t be satisfied

• missing optional dependencies are handled gracefully

• nodes can be given time budgets and produce partial results

• A service request now means executing the graph

Idea: Class-Locale Binding
• Virtual locale provides exclusive servicing of one or more

classes

• Any request to the class is served by the bound locale

• Topology is understood and static as defined through a
Class-Locale model prior to deploy

• Using virtual locales and constraint satisfaction, Class-Locales
can be reliable and tolerate fluctuations in available resources

• Possible extension of current ability to create a class instance
on a locale, but may need runtime support for network error
handling

Conclusion
• Chapel works well on ARM, making it easy to utilize

low-end clusters

• Language features of Chapel are very powerful, but
can have a steep learning curve

• Chapel locale support is similar to a Service without
needing to build explicit plumbing

• Adding support for fault-tolerance would make it
more useful in transient environments

