A Study of Red-Black SOR
Parallelization Using Chapel, D and
Go Languages

O




Results used in this paper

Sparsh Mittal, "A Study of Successive Over-
relaxation Method Parallelization Over
Modern HPC Languages", International Journal of
High Performance Computing and Networking, vol. 7,
number 4, pp. 202-298, 2014.

Code available for download at:

Purpose: studying parallelization features of Chapel, D
and Go, not to compare their performance


https://drive.google.com/folderview?id=0B3CSJpITzNscMVBpb3pfUFcwVzQ&usp=sharing

Presentation Plan

Quick introduction of SOR

Reason behind choice of SOR

Optimization of SOR and the parallel algorithm
SOR Parallelization in Chapel, D and Go
Experiments and Results

Salient Features of Chapel

Comparison of Chapel with other languages
Conclusion and future work



Successive Over-Relaxation Method

An iterative method for solving partial differential

equations
More memory efficient than direct method

Allows trading off accuracy with speed
Converges faster than Jacobi method

Xp=wXp+ (1 —w) X

Xk is the k-th Gauss Siedel iterate
0 < w < 21s the extrapolation factor.



Red-black SOR

O

» Out of several possible parallel SOR versions, we choose
red-black SOR

» Here all red cells have
black cells as their four
neighbors and vice versa

» This allows uncoupling of the solution at interior cells

» In an iteration, first update red cells, then while updating
black cells, just use updated values of red cells

» This strategy allows straightforward parallelization




Parallel but not embarrassingly parallel
Requires synchronization and convergence check
Iterative in nature

Reasonably small problem to allow focusing on key
principles

Usetul for research and many real-life problems, e.g.
computational fluid dynamics (CFD)



» Convergence check is done in serial manner

This avoids serial bottleneck which requires mutex
functionality and incurs performance overhead

» Granularity of convergence check is kept high, since
convergence 1s usually reached after many iterations

In our experiments, convergence is checked after 4000
iterations



Restructuring loop to avoid ‘if” statements

_____________________________________________________________________________________ @

Requires more if checks Requires less if checks
for (i= 0;1 < DIM; i++) for (i= 0;1 < DIM; i+= 2)
for(j= 0; j< DIM; j++) for(j= 0; j< DIM; j+= 2)
{ doProcessing()

if ( (1+))%2 ==0)

doProcessing() for (i= 1; 1 < DIM; i+= 2)
} for(j= 1; j< DIM; j+= 2)

doProcessing()

Refer http://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-an-
unsorted-array




Parallel SOR
algorithm for 2D
steady-state heat

conduction problem

Solve red cells
& Synchronize

Check for
convergence

—

4]

=D O -

10
11
12
13
14

15
16
17
i8
19

20
21
22
23
24
25
26
2T

28

Input: Initial temperature profile, P (number of
workers) and w.
Output: Final temperature profile and whether
SOR converged
Constants Used: MaxIterations (max number
of iterations), K (number of iterations after which
convergence is checked) and e (tolerance)
Variables Used: gridData and gridData0ld: 2D
arrays, hasConverged = false,
shouldCheckConvergence (whether to check for
convergence in this iteration) = false and
maxChange= 0.0

Initialize the gridData with initial temperature
profile
Algorithm for main routine

foreach iteration iter = I fo MaxIterations do
if iter is a muliiple of K then
shouldCheckConvergence = true
Copy entire gridData to gridData0ld
else
| shouldCheckConvergence = false
—~ end
Call updateGridRed with P workers in parallel
Synchronize
Call updateGridBlack with P workers in
parallel
Synchronize
if shouldCheckConvergence then
maxChange =0
foreach Cell (i,5) in the grid do
maxChange —
Maximum( |grid Data(i, ) —
gridDataOld(i, j)|, naxChange )
end
if maxChange << ¢ then
hasConverged = true
break

end

end

end

Print value of hasConverged. Return.
updateGridRed() for worker p;

foreach Cell of red color given to worker p; do
I Update gridData using Eq. 1

end

updateGridBlack() for worker p;

foreach Cell of black color given to worker p; do
I Update gridData using Eq. 1
end

—Initialization

Solve black cells
& Synchronize




Parallelization of each SOR iteration
in different languages




Solver is issued using begin
Synchronization achieved using sync

sync {
for p in 1..nSlaves {
begin SolveRed(p);

¥
¥

sync {
for p in 1..nSlaves {
begin SolveBlack(p);

¥
¥



We used functionality of __gshared Barrier barr = null;

{
Std.concurrency barr = new Barrier(nSlaves+1);
. for (int cc=0; cc<nSlaves; cc++)
Start new thread using /
Spawil spawn(&SolveRed, thisTid,cc);
. }
Thread id of the caller barr.wait(); //sync
thisTid. i
gshared to share a barr = new Barrier(nSlaves+1);
. for (int cc=0; cc<nSlaves; cc++)
variable across all threads {

. spawn(&SolveBlack, thisTid,cc);
Barrier from core.sync for

sync’ing multiple threads. barr.wait(); //sync
¥



We used Goroutines for concurrent

pro gramming var wg sync.WaitGroup
WaitGroup for barrier we Add(nSlaves)
synchronization gor p := 0; p < nSlaves; p++
] . go SolveRed(p, isChec

Add function to specify number of IveRed(p, isCheck)

. . }
goroutines to wait for wg. Wait()
Each goroutine issues Done to we.Add(nSlaves)
function to signal completion. for p := 0; p < nSlaves; p++

: {

When all goroutines complete, the g, solveBlack(p, isCheck)
barrier is released. ;

wg.Wait()



sync {
for p in 1..nSlaves {
begin SolveRed(p);

¥
b

sync {
for p in 1..nSlaves {
begin SolveBlack(p);

¥
¥

- Chapel |

{

barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)
{

spawn(&SolveRed, thisTid,cc);

¥

//sync.
barr.wait();

b
{

barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)

1
spawn(&SolveBlack, thisTid,cc);

¥

//sync.
barr.wait();

b
D

var wg sync.WaitGroup

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++

{
go SolveRed(p, isCheck)

}
wg.Wait()

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++

{
go SolveBlack(p, isCheck)

}
wg.Wait()

Go



Compile Chapel code with --fast flag
Compile D code with -inline -O -release flags.
We could not find suitable flag for Go code

Grid dimension 4096 X 4096

MaxlIterations 50,000, W = 0.376

Convergence check after every 4000 (=K) iterations
€= 0.00001 (maximum diff b/w two iterations)

Speedup = Tserial/ Tparallel



Results

Execution time Speedup w.r.t. their
(seconds) serial version

Chapel D Go Chapel D Go
1 (Serial) 7538 8609 10551
2 3977 4099 5204 1.90 2.10 2.03
4 3139 3322 3834 240 2.59 2.75
8 2834 3141 3052 2.67 2.74 3.46

Note: speedups are compared to serial language in the
same language.



For small number of threads (e.g. 2) performance
scales linearly
With increasing threads, performance does not scale

linearly due to
Thread synchronization for both red and black phase
Limited memory bandwidth and cache etc.



Provides features for concurrent programming as
part of language itself, and not library or pseudo-
comment directives

Can target inter-node, intra-node and instruction-
level parallelism

Supports both data and task parallelism.
Interoperability with C/C++
Provides several object-orient programming features

Supports arbitrarily nested parallelism and
composition of parallel tasks



D/Go provide auto garbage collection, Chapel doesn’t
D/Go/Chapel execute natively, unlike Java => speed

OpenMP has limited support for synchronization
operations inside parallel loops. Unlike OpenMP,
Chapel is a language itself and allows supporting
higher-level data abstractions

D allows exception handling, Chapel/Go do not

No inheritance or classes or function/operator
overloading in Go

Go function can return multiple values as such.



Conclusion and Future
Work

» We parallelized SOR in
Chapel, D and Go.

» Future Work
Solving SOR for 3D grid
Study of other languages

-t ot ow WW Mﬂtr.-.;

Experiments with larger - et e =3
i T L e Y- E

number of threads ‘ . - . .

Further optimizing each - —y e ey~
mm-aw.ﬁ.
program SynlSeteases A

~ g SRt BNl VAR .7 .
lﬁ..?" P .‘\...‘Ab-

o R T Gy O T N ek
-~ u—.lc.v-i Ssamid & ﬁ/




uestions and comments are welcome!

Sparsh Mittal
mittals@ornl.gov



mailto:mittals@ornl.gov

