
SPARSH MITTAL

OAK RIDGE NATIONAL LAB, USA .

A Study of Red-Black SOR
Parallelization Using Chapel, D and

Go Languages

ANNUAL CHAPEL IMPLEMENTERS AND USERS
WORKSHOP
JUNE, 2015

Results used in this paper

 Sparsh Mittal, "A Study of Successive Over-
relaxation Method Parallelization Over
Modern HPC Languages", International Journal of
High Performance Computing and Networking, vol. 7,
number 4, pp. 292-298, 2014.

 Code available for download at:
https://drive.google.com/folderview?id=0B3CSJpITzNscM
VBpb3pfUFcwVzQ&usp=sharing

 Purpose: studying parallelization features of Chapel, D
and Go, not to compare their performance

https://drive.google.com/folderview?id=0B3CSJpITzNscMVBpb3pfUFcwVzQ&usp=sharing

Presentation Plan

 Quick introduction of SOR

 Reason behind choice of SOR

 Optimization of SOR and the parallel algorithm

 SOR Parallelization in Chapel, D and Go

 Experiments and Results

 Salient Features of Chapel

 Comparison of Chapel with other languages

 Conclusion and future work

Successive Over-Relaxation Method

 An iterative method for solving partial differential
equations

 More memory efficient than direct method

 Allows trading off accuracy with speed

 Converges faster than Jacobi method

 is the k-th Gauss Siedel iterate

 0 < ω < 2 is the extrapolation factor.

Red-black SOR

 Out of several possible parallel SOR versions, we choose
red-black SOR

 Here all red cells have

black cells as their four

neighbors and vice versa

 This allows uncoupling of the solution at interior cells

 In an iteration, first update red cells, then while updating
black cells, just use updated values of red cells

 This strategy allows straightforward parallelization

Why we chose Red-black SOR

 Parallel but not embarrassingly parallel

 Requires synchronization and convergence check

 Iterative in nature

 Reasonably small problem to allow focusing on key
principles

 Useful for research and many real-life problems, e.g.
computational fluid dynamics (CFD)

Optimizations for SOR

 Convergence check is done in serial manner

 This avoids serial bottleneck which requires mutex
functionality and incurs performance overhead

 Granularity of convergence check is kept high, since
convergence is usually reached after many iterations

 In our experiments, convergence is checked after 4000
iterations

Requires more if checks Requires less if checks

for (i= 0; i < DIM; i++)

for(j= 0; j< DIM; j++)

{

if ((i+j)%2 ==0)

doProcessing()

}

for (i= 0; i < DIM; i+= 2)

for(j= 0; j< DIM; j+= 2)

doProcessing()

for (i= 1; i < DIM; i+= 2)

for(j= 1; j< DIM; j+= 2)

doProcessing()

Restructuring loop to avoid ‘if’ statements

Refer http://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-an-
unsorted-array

Parallel SOR
algorithm for 2D
steady-state heat

conduction problem

Solve red cells
& Synchronize

Solve black cells
& Synchronize

Check for
convergence

Initialization

Parallelization of each SOR iteration
in different languages

Chapel Language

 Solver is issued using begin

 Synchronization achieved using sync

sync {
for p in 1..nSlaves {
begin SolveRed(p);

}
}

sync {
for p in 1..nSlaves {
begin SolveBlack(p);

}
}

D Language

 We used functionality of
std.concurrency

 Start new thread using
spawn

 Thread id of the caller
thisTid.

 __gshared to share a
variable across all threads

 Barrier from core.sync for
sync’ing multiple threads.

__gshared Barrier barr = null;
{
barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)
{

spawn(&SolveRed, thisTid,cc);
}

barr.wait(); //sync
}
{

barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)
{

spawn(&SolveBlack, thisTid,cc);
}

barr.wait(); //sync
}

Go Language

 We used Goroutines for concurrent
programming

 WaitGroup for barrier
synchronization

 Add function to specify number of

goroutines to wait for

 Each goroutine issues Done to
function to signal completion.

 When all goroutines complete, the
barrier is released.

var wg sync.WaitGroup

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++
{
go SolveRed(p, isCheck)
}
wg.Wait()

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++
{
go SolveBlack(p, isCheck)
}
wg.Wait()

sync {
for p in 1..nSlaves {
begin SolveRed(p);

}
}

sync {
for p in 1..nSlaves {
begin SolveBlack(p);

}
}

{
barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)
{

spawn(&SolveRed, thisTid,cc);
}

//sync.
barr.wait();

}

{
barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)
{

spawn(&SolveBlack, thisTid,cc);
}

//sync.
barr.wait();

}

var wg sync.WaitGroup

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++
{
go SolveRed(p, isCheck)
}
wg.Wait()

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++
{
go SolveBlack(p, isCheck)
}
wg.Wait()

Chapel D Go

Experiments

 Compile Chapel code with --fast flag

 Compile D code with -inline -O -release flags.

 We could not find suitable flag for Go code

 Grid dimension 4096 X 4096

 MaxIterations 50,000, ω = 0.376

 Convergence check after every 4000 (=K) iterations

 ε= 0.00001 (maximum diff b/w two iterations)

 Speedup = Tserial/Tparallel

Results

Execution time
(seconds)

Speedup w.r.t. their
serial version

Chapel D Go Chapel D Go

1 (Serial) 7538 8609 10551

2 3977 4099 5204 1.90 2.10 2.03

4 3139 3322 3834 2.40 2.59 2.75

8 2834 3141 3052 2.67 2.74 3.46

Note: speedups are compared to serial language in the
same language.

Some comments on results

 For small number of threads (e.g. 2) performance
scales linearly

 With increasing threads, performance does not scale
linearly due to

 Thread synchronization for both red and black phase

 Limited memory bandwidth and cache etc.

Some salient features of Chapel

 Provides features for concurrent programming as
part of language itself, and not library or pseudo-
comment directives

 Can target inter-node, intra-node and instruction-
level parallelism

 Supports both data and task parallelism.

 Interoperability with C/C++

 Provides several object-orient programming features

 Supports arbitrarily nested parallelism and
composition of parallel tasks

Comparison of Chapel with other languages

 D/Go provide auto garbage collection, Chapel doesn’t

 D/Go/Chapel execute natively, unlike Java => speed

 OpenMP has limited support for synchronization
operations inside parallel loops. Unlike OpenMP,
Chapel is a language itself and allows supporting
higher-level data abstractions

 D allows exception handling, Chapel/Go do not

 No inheritance or classes or function/operator
overloading in Go

 Go function can return multiple values as such.

Conclusion and Future
Work

 We parallelized SOR in
Chapel, D and Go.

 Future Work
 Solving SOR for 3D grid

 Study of other languages

 Experiments with larger
number of threads

 Further optimizing each
program

Questions and comments are welcome!

Sparsh Mittal

mittals@ornl.gov

mailto:mittals@ornl.gov

