
SPARSH MITTAL

OAK RIDGE NATIONAL LAB, USA .

A Study of Red-Black SOR
Parallelization Using Chapel, D and

Go Languages

ANNUAL CHAPEL IMPLEMENTERS AND USERS
WORKSHOP
JUNE, 2015

Results used in this paper

 Sparsh Mittal, "A Study of Successive Over-
relaxation Method Parallelization Over
Modern HPC Languages", International Journal of
High Performance Computing and Networking, vol. 7,
number 4, pp. 292-298, 2014.

 Code available for download at:
https://drive.google.com/folderview?id=0B3CSJpITzNscM
VBpb3pfUFcwVzQ&usp=sharing

 Purpose: studying parallelization features of Chapel, D
and Go, not to compare their performance

https://drive.google.com/folderview?id=0B3CSJpITzNscMVBpb3pfUFcwVzQ&usp=sharing

Presentation Plan

 Quick introduction of SOR

 Reason behind choice of SOR

 Optimization of SOR and the parallel algorithm

 SOR Parallelization in Chapel, D and Go

 Experiments and Results

 Salient Features of Chapel

 Comparison of Chapel with other languages

 Conclusion and future work

Successive Over-Relaxation Method

 An iterative method for solving partial differential
equations

 More memory efficient than direct method

 Allows trading off accuracy with speed

 Converges faster than Jacobi method

 is the k-th Gauss Siedel iterate

 0 < ω < 2 is the extrapolation factor.

Red-black SOR

 Out of several possible parallel SOR versions, we choose
red-black SOR

 Here all red cells have

black cells as their four

neighbors and vice versa

 This allows uncoupling of the solution at interior cells

 In an iteration, first update red cells, then while updating
black cells, just use updated values of red cells

 This strategy allows straightforward parallelization

Why we chose Red-black SOR

 Parallel but not embarrassingly parallel

 Requires synchronization and convergence check

 Iterative in nature

 Reasonably small problem to allow focusing on key
principles

 Useful for research and many real-life problems, e.g.
computational fluid dynamics (CFD)

Optimizations for SOR

 Convergence check is done in serial manner

 This avoids serial bottleneck which requires mutex
functionality and incurs performance overhead

 Granularity of convergence check is kept high, since
convergence is usually reached after many iterations

 In our experiments, convergence is checked after 4000
iterations

Requires more if checks Requires less if checks

for (i= 0; i < DIM; i++)

for(j= 0; j< DIM; j++)

{

if ((i+j)%2 ==0)

doProcessing()

}

for (i= 0; i < DIM; i+= 2)

for(j= 0; j< DIM; j+= 2)

doProcessing()

for (i= 1; i < DIM; i+= 2)

for(j= 1; j< DIM; j+= 2)

doProcessing()

Restructuring loop to avoid ‘if’ statements

Refer http://stackoverflow.com/questions/11227809/why-is-processing-a-sorted-array-faster-than-an-
unsorted-array

Parallel SOR
algorithm for 2D
steady-state heat

conduction problem

Solve red cells
& Synchronize

Solve black cells
& Synchronize

Check for
convergence

Initialization

Parallelization of each SOR iteration
in different languages

Chapel Language

 Solver is issued using begin

 Synchronization achieved using sync

sync {
for p in 1..nSlaves {
begin SolveRed(p);

}
}

sync {
for p in 1..nSlaves {
begin SolveBlack(p);

}
}

D Language

 We used functionality of
std.concurrency

 Start new thread using
spawn

 Thread id of the caller
thisTid.

 __gshared to share a
variable across all threads

 Barrier from core.sync for
sync’ing multiple threads.

__gshared Barrier barr = null;
{
barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)
{

spawn(&SolveRed, thisTid,cc);
}

barr.wait(); //sync
}
{

barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)
{

spawn(&SolveBlack, thisTid,cc);
}

barr.wait(); //sync
}

Go Language

 We used Goroutines for concurrent
programming

 WaitGroup for barrier
synchronization

 Add function to specify number of

goroutines to wait for

 Each goroutine issues Done to
function to signal completion.

 When all goroutines complete, the
barrier is released.

var wg sync.WaitGroup

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++
{
go SolveRed(p, isCheck)
}
wg.Wait()

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++
{
go SolveBlack(p, isCheck)
}
wg.Wait()

sync {
for p in 1..nSlaves {
begin SolveRed(p);

}
}

sync {
for p in 1..nSlaves {
begin SolveBlack(p);

}
}

{
barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)
{

spawn(&SolveRed, thisTid,cc);
}

//sync.
barr.wait();

}

{
barr = new Barrier(nSlaves+1);
for (int cc=0; cc<nSlaves; cc++)
{

spawn(&SolveBlack, thisTid,cc);
}

//sync.
barr.wait();

}

var wg sync.WaitGroup

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++
{
go SolveRed(p, isCheck)
}
wg.Wait()

wg.Add(nSlaves)
for p := 0; p < nSlaves; p++
{
go SolveBlack(p, isCheck)
}
wg.Wait()

Chapel D Go

Experiments

 Compile Chapel code with --fast flag

 Compile D code with -inline -O -release flags.

 We could not find suitable flag for Go code

 Grid dimension 4096 X 4096

 MaxIterations 50,000, ω = 0.376

 Convergence check after every 4000 (=K) iterations

 ε= 0.00001 (maximum diff b/w two iterations)

 Speedup = Tserial/Tparallel

Results

Execution time
(seconds)

Speedup w.r.t. their
serial version

Chapel D Go Chapel D Go

1 (Serial) 7538 8609 10551

2 3977 4099 5204 1.90 2.10 2.03

4 3139 3322 3834 2.40 2.59 2.75

8 2834 3141 3052 2.67 2.74 3.46

Note: speedups are compared to serial language in the
same language.

Some comments on results

 For small number of threads (e.g. 2) performance
scales linearly

 With increasing threads, performance does not scale
linearly due to

 Thread synchronization for both red and black phase

 Limited memory bandwidth and cache etc.

Some salient features of Chapel

 Provides features for concurrent programming as
part of language itself, and not library or pseudo-
comment directives

 Can target inter-node, intra-node and instruction-
level parallelism

 Supports both data and task parallelism.

 Interoperability with C/C++

 Provides several object-orient programming features

 Supports arbitrarily nested parallelism and
composition of parallel tasks

Comparison of Chapel with other languages

 D/Go provide auto garbage collection, Chapel doesn’t

 D/Go/Chapel execute natively, unlike Java => speed

 OpenMP has limited support for synchronization
operations inside parallel loops. Unlike OpenMP,
Chapel is a language itself and allows supporting
higher-level data abstractions

 D allows exception handling, Chapel/Go do not

 No inheritance or classes or function/operator
overloading in Go

 Go function can return multiple values as such.

Conclusion and Future
Work

 We parallelized SOR in
Chapel, D and Go.

 Future Work
 Solving SOR for 3D grid

 Study of other languages

 Experiments with larger
number of threads

 Further optimizing each
program

Questions and comments are welcome!

Sparsh Mittal

mittals@ornl.gov

mailto:mittals@ornl.gov

