
Title: Affine Loop Optimization using Modulo Unrolling in Chapel

Authors/Affiliation: Aroon Sharma (Graduate Student, University of Maryland), Rajeev Barua

(Associate Professor, Department of Electrical and Computer Engineering at the University of

Maryland), and Michael Ferguson (Laboratory for Telecommunication Sciences)

Presenting Authors: Aroon Sharma, Rajeev Barua

Abstract: Compilation of shared memory programs for distributed memory architectures is a

vital task with high potential for speedups over existing techniques. The partitioned global

address space (PGAS) parallel programming model, one such implementation, exposes locality of

reference information to the programmer thereby improving programmability and allowing for

compile-time performance optimizations on top of a shared memory programming model. In

particular, shared memory programs compiled to message passing hardware can improve in

performance by aggregating messages and eliminating dynamic locality checks for affine array

accesses in the PGAS model.

This research presents a loop optimization for message passing programs that use affine array

accesses in Chapel, a PGAS parallel programming language. Each message in Chapel incurs

some non-trivial run-time overhead. Therefore, aggregating messages improves performance. The

optimization is based on a technique known as modulo unrolling where the locality of any affine

array access can be deduced at compile time. First pioneered by Barua et al for tiled architectures,

we adapt modulo unrolling to the problem of efficiently compiling PGAS languages to message-

passing computers. When applied to loops and distributed data, modulo unrolling can decide

when to aggregate messages thereby reducing the overall message count and run time for a

particular loop. Compared to other methods, modulo unrolling greatly simplifies the very

complex problem of automatic code generation of message-passing code from a non-message

passing language like Chapel. It also results in substantial performance improvement compared to

the un-optimized Chapel compiler.

To implement this optimization in Chapel, we modify the leader and follower iterators in the

Cyclic and Block Cyclic data distribution modules. Results were collected that compare the

performance of our optimized Chapel programs with programs using the existing Chapel data

distributions. For a ten-locale machine tested on three benchmarks, we see on average a 92%

reduction in overall message count and a 2.46 speedup improvement. Our results show that

modulo unrolling and aggregating of messages always result in performance improvements when

comparing with Chapel’s existing data distributions. However, for some benchmarks the highest

performance will be determined by the user’s choice of data distribution.

