

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html

3

Fock matrix in a Nutshell

 

1 1 2 2 1 2
12

1
(|) () () () ()

|

g r g r g r g r dr dr
r

D F

D F

D F

D F

D F

D F

   

 

 

 

 

 

 

 

 







   
   
   
          
   
   
   
      



1 integral contributes to 6 Fock Matrix elements

F i j=∑
k l

(2(i j∣k l)−(i k∣ j l)) D k l

• Sparsity, variable
integral costs,
algorithm constraints,
symmetry,
shell blocking, ...

4

Global Arrays (technologies)

• Shared-memory-like model
– Fast local access
– NUMA aware and easy to use
– MIMD and data-parallel modes
– Inter-operates with MPI, …

• BLAS and linear algebra interface
• Ported to major parallel machines

– IBM, Cray, SGI, clusters,...

• Originated in an HPCC project
• Used by most major chemistry codes,

financial futures forecasting,
astrophysics, computer graphics

• Supported by DOE

• One of the legacies of
Jarek Nieplocha, PNNL

Single, shared data structure

Physically distributed data

http://www.emsl.pnl.gov/docs/global/

5

local memory

Non-uniform memory access model of
computation

Shared Object Shared Object

 c
op

y
to

 s
ha

re
d

ob
je

ct

local memorylocal memory

compute/update

1-sided
communication

1-sided
communication

6

Distributed data SCF
• First success for NWChem and Global Arrays

do tiles of i
 do tiles of j
 do tiles of k
 do tiles of l
 get patches ij, ik, il, jk, jl, kl
 compute integrals
 accumulate results back into patches

t comm=O(B2
) tcompute=O (B4

)
tcompute

t comm

=O(B2
)

B = block size

Mini-apps used to
evaluate HPCS
languages Chapel,
X10, Fortress
 - just the data flow

Parallel loop nest

7

Dmy_next_task = SharedCounter(chunksize)

do i=1,max_i

if(i.eq.my_next_task) then

call ga_get()

(do work)

call ga_acc()

my_next_task = SharedCounter(chunksize)

endif

enddo

Barrier()

Dynamic load balancing and NUMA

F

Dynamic load balancing

MADNESS 2009 10

Ariana Beste

Hideo Sekino Robert Harrison

Gregory Beylkin

Eduard Valeyev

Judy Hill

George Fann

Matt Reuter

Alvaro Vasquez

Scott Thornton

Rebecca
Hartman-Baker

Nicholas Vence
Takahiro Ii

Jeff Hammond

Nichols Romero

Jia, Kato, Calvin, Pei, ...

What is MADNESS?

• A general purpose numerical environment for
reliable and fast scientific simulation
– Chemistry, nuclear physics, atomic physics, material

science, nanoscience, climate, fusion, ...

• A general purpose parallel programming
environment designed for the peta/exa-scales

• Addresses many of the sources of complexity that
constrain our HPC ambitions

http://code.google.com/p/m-a-d-n-e-s-s
http://harrison2.chem.utk.edu/~rjh/madness/

Numerics

Parallel Runtime

Applications

Why MADNESS?

• Reduces S/W complexity
– MATLAB-like level of composition of scientific

problems with guaranteed speed and precision
– Programmer not responsible for managing

dependencies, scheduling, or placement

• Reduces numerical complexity
– Solution of integral not differential equations
– Framework makes latest techniques in applied math

and physics available to wide audience

Big picture
• Want robust algorithms that scale correctly with

system size and are easy to write
• Robust, accurate, fast computation

– Gaussian basis sets: high accuracy yields dense
matrices and linear dependence – O(N3)

– Plane waves: force pseudo-potentials – O(N3)

– O(N logmN logk) is possible, guaranteed 

• Semantic gap
– Why are our equations just O(100) lines but programs

O(1M) lines?

• Facile path from laptop to exaflop

E.g., with guaranteed precision of 1e-6 form a
numerical representation of a Gaussian in the

cube [-20,20]3, solve Poisson’s equation, and plot
the resulting potential

(all running in parallel with threads+MPI)

There are only two lines doing real work. First the Gaussian (g) is projected into
the adaptive basis to the default precision. Second, the Green’s function is applied.
The exact results are norm=1.0 and energy=0.3989422804.

output: norm of f 1.00000000e+00 energy 3.98920526e-01

Compose directly in terms of
functions and operators

This is a Latex rendering of a
program to solve the Hartree-Fock
equations for the helium atom

The compiler also output a C++
code that can be compiled without
modification and run in parallel

He atom
Hartree-Fock

“Fast” algorithms
• Fast in mathematical sense

– Optimal scaling of cost with accuracy & size

• Multigrid method – Brandt (1977)
– Iterative solution of differential equations
– Analyzes solution/error at different length scales

• Fast multipole method – Greengard, Rokhlin
(1987)
– Fast application of dense operators
– Exploits smoothness of operators

• Multiresolution analysis
– Exploits smoothness of operators and functions

The math behind the MADNESS

• Multiresolution

• Low-separation
rank

• Low-operator
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0+(V 1−V 0)+⋯+ (V n−V n−1)

f x1, , xn=∑
l=1

M

 l∏
i=1

d

f i
 l 

 xiO 

∥ f i
l ∥2=1  l0

A=∑
=1

r

u  v
TO 

0 v
T v=u

T u= 

How to “think” multiresolution

• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer resolution
grids, …

• Telescoping series

– Instead of using the most accurate representation, use the
difference between successive approximations

– Representation on V0 small/dense; differences sparse

– Computationally efficient; possible insights

V 0⊂V 1⊂⋯⊂V n

V n=V 0+(V 1−V 0)+⋯+ (V n−V n−1)

Why “think” multiresolution?
• It is everywhere in nature/chemistry/physics

– Core/valence; high/low frequency; short/long range;
smooth/non-smooth; atomic/nano/micro/macro scale

• Common to separate just two scales
– E.g., core orbital heavily contracted, valence flexible

– More efficient, compact, and numerically stable

• Multiresolution
– Recursively separate all length/time scales

– Computationally efficient and numerically stable

– Coarse-scale models that capture fine-scale detail

Another Key Component

• Trade precision for speed – everywhere
– Don’t do anything exactly

– Perform everything to O()

– Require
• Robustness

• Speed, and

• Guaranteed, arbitrary, finite precision

Please forget about wavelets
• They are not central

• Wavelets are a convenient basis for spanning Vn-Vn-

1 and understanding its properties

• But you don’t actually need to use them
– MADNESS does still compute wavelet coefficients, but

Beylkin’s new code does not

• Please remember this …
– Discontinuous spectral element with multi-resolution

and separated representations for fast computation with
guaranteed precision in many dimensions.

Tree in reconstructed form. Scaling function (sum)
coefficients at leaf nodes. Interior nodes empty.

Tree in compressed form. Wavelet (difference)
coefficients at interior nodes, with scaling functions
coefficients also at root. Leaf nodes empty.

Compression algorithm. Starting from leaf nodes, scaling function
(sum) coefficients are passed to parent. Parent “filters” the
childrens' coefficients to produce sum and wavelet (difference)
coefficients at that level, then passes sum coefficients to its parent.

Reconstruction is simply the reverse processes.

To produce the non-standard form the compression algorithm is
run but scaling function coefficients are retained at the leaf and
interior nodes.

Reconstructed

Compressed

Empty

Sum
coefficients

Difference
coefficients
Sum and difference
coefficients

Addition is (most straightforwardly) performed in the compressed
form. Coefficients are simply added with missing nodes being
treated as if zero.

Empty

Sum
coefficients

Difference
coefficients
Sum and difference
coefficients

+

∂ f
∂ x

Differentiation (for simplicity here using central differences and Dirichlet boundary
conditions) is applied in the scaling function basis. To compute the derivative of the function
in the box corresponding to a leaf node, we require the coefficients from the neighboring
boxes at the same level.
• If the neighboring leaf nodes exist, all is easy.
• If it exists at a higher level,we can make the coefficients by recurring down from the parent
 using the two-scale relation.
• If the neighbor exists at a finer scale, we must recur down until both neighbors are at the
 same level.

Hence, phrased as parallel computation on all leaf nodes , differentiation must search for
neighbors in the tree at the same and higher levels, and may initiate computation at lower
levels. It can also be phrased as a recursive descent of the tree, which can have advantages in
reducing the amount of probes up the tree for parents of neighbors (esp. in higher dimensions).

∫K (x− y) f (y) dy

Convolution The first step is to compress into non-standard form with scaling function and
wavelet coefficients at each interior node. Then, we can independently compute the
contribution of each box (node) to the result at the same level of the tree. Depending upon
dimensionality, accuracy, and the kernel (K), we usually only need to compute the
contributions of a box to itself and its immediate neighbors. The support (i.e., level of
refinement) of the result is very dependent on the kernel. Here we consider convolution
with a Gaussian (Green's function for the heat equation) which is a smoothing operator.
After the computation is complete, we must sum down the tree to recover the standard form.

Hence, phrased as computation on all the nodes in non-standard form, convolution requires
compression and reconstruction, and during the computation communicates across the tree at
the same level to add results into neighboring boxes and up to connect new nodes to parents.

1.0

2e-5 1e-2 0.3 1e-2 2e-5 0.00.0

28

MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks now the target for the intranode runtime
May more adopt more of TBB functionality
Open Community Runtime of great interest

29

Runtime Objectives
● Scalability to 1+M processors ASAP

● Runtime responsible for
● scheduling and placement,
● managing dependencies & hiding latency

● Compatible with existing models (MPI, GA)

● Borrow successful concepts from Cilk,
Charm++, Python, HPCS languages

30

Why a new runtime?
• MADNESS computation is irregular & dynamic

– 1000s of dynamically-refined meshes changing
frequently & independently (to guarantee precision)

• Because we wanted to make MADNESS itself
easier to write not just the applications using it
– We explored implementations with MPI, Global Arrays,

and Charm++ and all were inadequate

• MADNESS is helping drive
– One-sided operations in MPI-3, DOE projects in fault

tolerance, ...

31

Key runtime elements

• Futures for hiding latency and automating
dependency management

• Global names and name spaces

• Non-process centric computing
– One-sided messaging between objects
– Retain place=process for MPI/GA legacy

compatibility

• Dynamic load balancing
– Data redistribution, work stealing,

randomization

32

Futures
● Result of an

asynchronous
computation
– Cilk, Java, HPCLs,

C++0x

● Hide latency due
to communication
or computation

● Management of
dependencies
– Via callbacks

int f(int arg);
ProcessId me, p;

Future<int> r0=task(p, f, 0);
Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0. This is used as the argument
of a second task whose execution is deferred until
its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to
express complex and dynamic dependencies.

33

Virtualization of data and tasks
Future:
 MPI rank
 probe()
 set()
 get()

Future Compress(tree):
Future left = Compress(tree.left)
Future right = Compress(tree.right)
return Task(Op, left, right)

Compress(tree)
Wait for all tasks to complete

Task:
 Input parameters
 Output parameters
 probe()
 run()
 get()

Benefits: Communication latency & transfer time largely hidden
 Much simpler composition than explicit message passing
 Positions code to use “intelligent” runtimes with work stealing
 Positions code for efficient use of multi-core chips
 Locality-aware and/or graph-based scheduling

34

Global Names

● Objects with global
names with different
state in each process
– C.f. shared[threads]

in UPC; co-Array

● Non-collective
constructor;
deferred destructor
– Eliminates synchronization

class A : public WorldObject<A>
{

int f(int);
};
ProcessID p;
A a(world);
Future<int> b =

a.task(p,&A::f,0);

A task is sent to the instance of a in process p.
If this has not yet been constructed the message
is stored in a pending queue. Destruction of a
global object is deferred until the next user
synchronization point.

35

#define WORLD_INSTANTIATE_STATIC_TEMPLATES
#include <world/world.h>
using namespace madness;
class Foo : public WorldObject<Foo> {
 const int bar;
public:
 Foo(World& world, int bar) : WorldObject<Foo>(world), bar(bar)

{process_pending();}

 int get() const {return bar;}
};
int main(int argc, char** argv) {
 MPI::Init(argc, argv);
 madness::World world(MPI::COMM_WORLD);

 Foo a(world,world.rank()), b(world,world.rank()*10)

 for (ProcessID p=0; p<world.size(); p++) {
 Future<int> futa = a.send(p,&Foo::get);
 Future<int> futb = b.send(p,&Foo::get);
 // Could work here until the results are available
 MADNESS_ASSERT(futa.get() == p);
 MADNESS_ASSERT(futb.get() == p*10);
 }
 world.gop.fence();
 if (world.rank() == 0) print("OK!");
 MPI::Finalize();
} Figure 1: Simple client-server program implemented using WorldObject.

36

#define WORLD_INSTANTIATE_STATIC_TEMPLATES
#include <world/world.h>

using namespace std;
using namespace madness;

class Array : public WorldObject<Array> {
 vector<double> v;
public:
 /// Make block distributed array with size elements
 Array(World& world, size_t size)
 : WorldObject<Array>(world), v((size-1)/world.size()+1)
 {
 process_pending();
 };

 /// Return the process in which element i resides
 ProcessID owner(size_t i) const {return i/v.size();};

 Future<double> read(size_t i) const {
 if (owner(i) == world.rank())
 return Future<double>(v[i-world.rank()*v.size()]);
 else
 return send(owner(i), &Array::read, i);
 };

 Void write(size_t i, double value) {
 if (owner(i) == world.rank())
 v[i-world.rank()*v.size()] = value;
 else
 send(owner(i), &Array::write, i, value);
 return None;
 };
};

int main(int argc, char** argv) {
 initialize(argc, argv);
 madness::World world(MPI::COMM_WORLD);

 Array a(world, 10000), b(world, 10000);

 // Without regard to locality, initialize a and b
 for (int i=world.rank(); i<10000; i+=world.size()) {
 a.write(i, 10.0*i);
 b.write(i, 7.0*i);
 }
 world.gop.fence();

 // All processes verify 100 random values from each array
 for (int j=0; j<100; j++) {
 size_t i = world.rand()%10000;
 Future<double> vala = a.read(i);
 Future<double> valb = b.read(i);
 // Could do work here until results are available
 MADNESS_ASSERT(vala.get() == 10.0*i);
 MADNESS_ASSERT(valb.get() == 7.0*i);
 }
 world.gop.fence();

 if (world.rank() == 0) print("OK!");
 finalize();
}

Complete example program illustrating the implementation and use of a crude,
block-distributed array upon the functionality of WorldObject.

37

Global Namespaces
● Specialize global names

to containers
– Hash table, arrays, ...

● Replace global pointer
(process+local pointer)
with more powerful
concept

● User definable map from
keys to “owner” process

class Index; // Hashable
class Value {

double f(int);
};

WorldContainer<Index,Value> c;
Index i,j; Value v;
c.insert(i,v);
Future<double> r =

c.task(j,&Value::f,666);

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

A container is created mapping indices
to values.

A value is inserted into the container.

A task is spawned in the process owning
key j to invoke c[j].f(666).

38

Multi-threaded architecture

RMI Server
(MPI or portals)

Incoming active
messages

Task dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active messages

Work stealingMust augment with cache-aware
algorithms and scheduling

39

Some issues
• Excessive global barriers

– Termination detection for global algorithms on distributed mutable data structures

• Messy, nearly redundant code expressing variants of algorithms on
multiple trees
– Need some templates / code generation

• Need efficient and easy way to aggregate data/work to exploit
GPGPUs

• Efficient kernels for GPGPUs (single SM)
– Non-square matrices, shortish loops – performance problem

• Switching between single-/multi-thread tasks

• Efficient multi-threaded code for thread units sharing L1
(e.g., BGQ, Xeon Phi)

• Multiple interoperable DSLs embedded in or generating general
purpose language

• Kitchen sink environment – full interoperability between runtimes,
data structures, external I/O libraries, etc.

Molecular Electronic Structure
Energy and
gradients

ECPs coming
(Sekino,
Thornton)

Response
properties
(Vasquez, Yokoi,
Sekino)

Still not as
functional as
previous
Python version
of Yanai

Spin density
of solvated
electron

Nuclear physics

J. Pei, G.I. Fann, Y. Ou,
W. Nazarewicz
UT/ORNL

● DOE UNDEF
● Nuclei & neutron matter
● ASLDA
● Hartree-Fock Bogliobulov
● Spinors
● Gamov states

Imaginary part of the seventh eigen function
two-well Wood-Saxon potential

Nanoscale photonics
(Reuter, Northwestern; Hill, Harrison ORNL)

Diffuse domain approximation for interior boundary value problem; long-wavelength Maxwell equations;
Poisson equation; Micron-scale Au tip 2 nm above Si surface with H2 molecule in gap – 107 difference between
shortest and longest length scales.

Electron correlation (6D)
• All defects in mean-field model are ascribed to

electron correlation
• Singularities in Hamiltonian imply for a two-electron atom

• Include the inter-electron distance in the wavefunction
– E.g., Hylleraas 1938 wavefunction for He

– Potentially very accurate, but not systematically improvable, and (until
recently) not computationally feasible for many-electron systems

• Configuration interaction expansion – slowly convergent

r1

r2

r12

  r1, r2, r1 2=1
1
2

r12⋯ as r12 0

  r1, r2, r1 2=exp −r1r21a r1 2⋯

  r1, r2,=∑
i

c i∣1
 i

r12
i 

 r2∣

x

y

 |x-y|

 |x-y| x-y

 |x-y|

 y-x

 |x-y|

 |x-y|

 |x-y|

 |x-y|

 y-x

 x-y

 y-x

 x-y

In 3D, ideally must
be one box removed
from the diagonal

Diagonal box has
full rank

Boxes touching
diagonal (face, edge,
or corner) have
increasingly low rank

Away from diagonal
r = O(-log )

r = separation rank

∣x− y∣=∑
=1

r

f  x g   y 
Partitioned SVD representation

47

The way forward demands a
change in paradigm

- by us chemists, the funding agencies, and the
supercomputer centers

• A communal effort recognizing the increased cost
and complexity of code development for modern
theory beyond the petascale

• Coordination between agencies to develop and
deploy new simulation capabilities in sustainable
manner

• Re-emphasizing basic and advanced theory and
computational skills in undergraduate and
graduate education

48
http://s2i2.org

49

Summary
● We need radical changes in how we compose

scientific S/W
− Complexity at limits of cost and human ability
− Need extensible tools/languages with support for code

transformation not just translation
● Students need to be prepared for computing and

data in 2020+ not as it was in 2000 and before
− Pervasive, massive parallelism
− Bandwidth limited computation and analysis

● An intrinsically multidisciplinary activity

50

Funding
 DOE: Exascale co-design, SciDAC, Office of Science

divisions of Advanced Scientific Computing Research and
Basic Energy Science, under contract DE-AC05-
00OR22725 with Oak Ridge National Laboratory, in part
using the National Center for Computational Sciences.

 DARPA HPCS2: HPCS programming language evaluation
 NSF CHE-0625598: Cyber-infrastructure and Research

Facilities: Chemical Computations on Future High-end
Computers

 NSF CNS-0509410: CAS-AES: An integrated framework
for compile-time/run-time support for multi-scale
applications on high-end systems

 NSF OCI-0904972: Computational Chemistry and
Physics Beyond the Petascale

51

Do new science with

O(1) programmers
O(100,000) nodes
O(100,000,000) cores
O(1,000,000,000)
threads & growing

• Increasing intrinsic
 complexity of science

• Complexity kills … sequential or parallel
– Expressing concurrency at extreme scale
– Managing the memory hierarchy

• Semantic gap (Colella)
– Why are equations O(100) lines but program is O(1M)
– What’s in the semantic gap – and how to shrink it?

52

Wish list

● Eliminate gulf between theoretical innovation in small
groups and realization on high-end computers

● Eliminate the semantic gap so that efficient parallel code
is no harder than doing the math

● Enable performance-portable “code” that can be
automatically migrated to future architectures

● Reduce cost at all points in the life cycle

● Much of this is pipe dream – but what can we aspire to?

53

Scientific vs. WWW
or mobile software

● Why are we not experiencing similar
exponential growth in functionality?

– Level of investment; no. of developers?
– Lack of software interoperability and standards?
– Competition not cooperation between groups?
– Shifting scientific objectives?
– Are our problems intrinsically

harder?
– Failure to embrace/develop

higher levels of composition?
– Different hardware complexity?

54

How do we write code for a
machine that does not yet exist?

• Nothing too exotic, e.g., the mix of SIMD and
scalar units, registers, massive multi-threading,
software/hardware managed cache, fast/slow &
local/remote memory that we expect in 2018+

• Answer 1: presently cannot
– but it’s imperative that we learn how and deploy the

necessary tools

• Answer 2: don’t even try!
– where possible generate code from high level specs
– provides tremendous agility and freedom to explore

diverse architectures

55

Dead code

• Requires human labor
– to migrate to future

architectures, or
– to exploit additional

concurrency, or
– ...

• By these criteria most
extant code is dead

• Sanity check
– How much effort is

required to port to hybrid cpu+GPGPU?

7 December 1969

56

The language of
many-body physics

57

CCSD Doubles Equation
hbar[a,b,i,j] == sum[f[b,c]*t[i,j,a,c],{c}] -sum[f[k,c]*t[k,b]*t[i,j,a,c],{k,c}] +sum[f[a,c]*t[i,j,c,b],{c}] -sum[f[k,c]*t[k,a]*t[i,j,c,b],{k,c}]

-sum[f[k,j]*t[i,k,a,b],{k}] -sum[f[k,c]*t[j,c]*t[i,k,a,b],{k,c}] -sum[f[k,i]*t[j,k,b,a],{k}] -sum[f[k,c]*t[i,c]*t[j,k,b,a],{k,c}]
+sum[t[i,c]*t[j,d]*v[a,b,c,d],{c,d}] +sum[t[i,j,c,d]*v[a,b,c,d],{c,d}] +sum[t[j,c]*v[a,b,i,c],{c}] -sum[t[k,b]*v[a,k,i,j],{k}]
+sum[t[i,c]*v[b,a,j,c],{c}] -sum[t[k,a]*v[b,k,j,i],{k}] -sum[t[k,d]*t[i,j,c,b]*v[k,a,c,d],{k,c,d}] -sum[t[i,c]*t[j,k,b,d]*v[k,a,c,d],
{k,c,d}] -sum[t[j,c]*t[k,b]*v[k,a,c,i],{k,c}] +2*sum[t[j,k,b,c]*v[k,a,c,i],{k,c}] -sum[t[j,k,c,b]*v[k,a,c,i],{k,c}]
-sum[t[i,c]*t[j,d]*t[k,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[k,d]*t[i,j,c,b]*v[k,a,d,c],{k,c,d}] -sum[t[k,b]*t[i,j,c,d]*v[k,a,d,c],{k,c,d}]
-sum[t[j,d]*t[i,k,c,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[i,c]*t[j,k,b,d]*v[k,a,d,c],{k,c,d}] -sum[t[i,c]*t[j,k,d,b]*v[k,a,d,c],{k,c,d}]
-sum[t[j,k,b,c]*v[k,a,i,c],{k,c}] -sum[t[i,c]*t[k,b]*v[k,a,j,c],{k,c}] -sum[t[i,k,c,b]*v[k,a,j,c],{k,c}]
-sum[t[i,c]*t[j,d]*t[k,a]*v[k,b,c,d],{k,c,d}] -sum[t[k,d]*t[i,j,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[k,a]*t[i,j,c,d]*v[k,b,c,d],{k,c,d}]
+2*sum[t[j,d]*t[i,k,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[j,d]*t[i,k,c,a]*v[k,b,c,d],{k,c,d}] -sum[t[i,c]*t[j,k,d,a]*v[k,b,c,d],{k,c,d}]
-sum[t[i,c]*t[k,a]*v[k,b,c,j],{k,c}] +2*sum[t[i,k,a,c]*v[k,b,c,j],{k,c}] -sum[t[i,k,c,a]*v[k,b,c,j],{k,c}]
+2*sum[t[k,d]*t[i,j,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,d]*t[i,k,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,c]*t[k,a]*v[k,b,i,c],{k,c}]
-sum[t[j,k,c,a]*v[k,b,i,c],{k,c}] -sum[t[i,k,a,c]*v[k,b,j,c],{k,c}] +sum[t[i,c]*t[j,d]*t[k,a]*t[l,b]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[k,l,c,d],{k,l,c,d}]
+sum[t[k,a]*t[l,b]*t[i,j,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,c,a]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[k,l,c,d],{k,l,c,d}]
+sum[t[i,c]*t[l,b]*t[j,k,d,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,c,d],{k,l,c,d}]
+4*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,d,b]*v[k,l,c,d],
{k,l,c,d}] +sum[t[i,c]*t[j,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,j,c,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[i,j,c,b]*t[k,l,a,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,j,a,c]*t[k,l,b,d]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,c]*t[k,b]*t[l,a]*v[k,l,c,i],
{k,l,c}] +sum[t[l,c]*t[j,k,b,a]*v[k,l,c,i],{k,l,c}] -2*sum[t[l,a]*t[j,k,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[l,a]*t[j,k,c,b]*v[k,l,c,i],{k,l,c}]
-2*sum[t[k,c]*t[j,l,b,a]*v[k,l,c,i],{k,l,c}] +sum[t[k,a]*t[j,l,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[k,b]*t[j,l,c,a]*v[k,l,c,i],{k,l,c}]
+sum[t[j,c]*t[l,k,a,b]*v[k,l,c,i],{k,l,c}] +sum[t[i,c]*t[k,a]*t[l,b]*v[k,l,c,j],{k,l,c}] +sum[t[l,c]*t[i,k,a,b]*v[k,l,c,j],{k,l,c}]
-2*sum[t[l,b]*t[i,k,a,c]*v[k,l,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,c,a]*v[k,l,c,j],{k,l,c}] +sum[t[i,c]*t[k,l,a,b]*v[k,l,c,j],{k,l,c}]
+sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,d,c],{k,l,c,d}]
+sum[t[j,d]*t[l,a]*t[i,k,c,b]*v[k,l,d,c],{k,l,c,d}] -2*sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,d,c],{k,l,c,d}]
-2*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,d,c],
{k,l,c,d}] +sum[t[i,k,c,b]*t[j,l,d,a]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[k,a]*t[l,b]*v[k,l,i,j],
{k,l}] +sum[t[k,l,a,b]*v[k,l,i,j],{k,l}] +sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[l,k,c,d],{k,l,c,d}] +sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[l,k,c,d],
{k,l,c,d}] +sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[l,k,c,d],{k,l,c,d}] -2*sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[l,k,c,d],{k,l,c,d}]
+sum[t[i,c]*t[l,a]*t[j,k,d,b]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,c,b]*t[k,l,a,d]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,a,c]*t[k,l,b,d]*v[l,k,c,d],
{k,l,c,d}] -2*sum[t[l,c]*t[i,k,a,b]*v[l,k,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,a,c]*v[l,k,c,j],{k,l,c}] +sum[t[l,a]*t[i,k,c,b]*v[l,k,c,j],{k,l,c}]
+v[a,b,i,j]

h i j
a b

=〈a b
i j∣e− T 1−

T 2 H e
T 1

T 2∣0〉

58

The Tensor Contraction Engine:
A Tool for Quantum Chemistry

Oak Ridge National
Laboratory

David E. Bernholdt,
Venkatesh Choppella, Robert
Harrison

Pacific Northwest National
Laboratory

So Hirata

Louisiana State University
J Ramanujam,

Ohio State University
Gerald Baumgartner, Alina
Bibireata, Daniel Cociorva,
Xiaoyang Gao, Sriram
Krishnamoorthy, Sandhya
Krishnan, Chi-Chung Lam,
Quingda Lu, Russell M.
Pitzer, P Sadayappan,
Alexander Sibiryakov

University of Waterloo
Marcel Nooijen, Alexander
Auer

Research at ORNL supported by the Laboratory Directed Research and Development Program. Research at PNNL supported by the Office of Basic Energy
Sciences, U. S. Dept. of Energy. Research at OSU, Waterloo, and LSU supported by the National Science Foundation Information Technology Research Program

http://www.cis.ohio-state.edu/~gb/TCE/

