


http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
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Fock matrix in a Nutshell
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1 integral contributes to 6 Fock Matrix elements

F i j=∑
k l

( 2( i j∣k l)−( i k∣ j l)) D k l

• Sparsity, variable 
integral costs, 
algorithm constraints,
symmetry, 
shell blocking, ...  
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Global Arrays (technologies) 

• Shared-memory-like model
– Fast local access
– NUMA aware and easy to use
– MIMD and data-parallel modes
– Inter-operates with MPI, …

• BLAS and linear algebra interface
• Ported to major parallel machines

– IBM, Cray, SGI, clusters,...

• Originated in an HPCC project
• Used by most major chemistry codes, 

financial futures forecasting, 
astrophysics, computer graphics

• Supported by DOE 

• One of the legacies of 
Jarek Nieplocha, PNNL

Single, shared data structure

Physically distributed data

http://www.emsl.pnl.gov/docs/global/
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local memory

Non-uniform memory access model of 
computation

Shared Object Shared Object

 c
op

y 
to

 s
ha

re
d 

ob
je

ct

local memorylocal memory

compute/update

1-sided
communication

1-sided
communication



6

Distributed data SCF 
• First success for NWChem and Global Arrays

do tiles of i
    do tiles of j
        do tiles of k
            do tiles of l
                get patches ij, ik, il, jk, jl, kl
                compute integrals
                accumulate results back into patches   
   
        

t comm=O( B2
) tcompute=O (B4

)
tcompute

t comm

=O( B2
)

B = block size

Mini-apps used to
evaluate HPCS
languages Chapel,
X10, Fortress
 - just the data flow

Parallel loop nest
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Dmy_next_task = SharedCounter(chunksize)

do i=1,max_i

if(i.eq.my_next_task) then

call ga_get(                                      )

(do work)

call ga_acc(                                      )

my_next_task = SharedCounter(chunksize)

endif

enddo

Barrier()

Dynamic load balancing and NUMA

F

Dynamic load balancing
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What is MADNESS?

• A general purpose numerical environment for 
reliable and fast scientific simulation
– Chemistry, nuclear physics, atomic physics, material 

science, nanoscience, climate, fusion, ...

• A general purpose parallel programming 
environment designed for the peta/exa-scales

• Addresses many of the sources of complexity that 
constrain our HPC ambitions

http://code.google.com/p/m-a-d-n-e-s-s
http://harrison2.chem.utk.edu/~rjh/madness/

Numerics

Parallel Runtime

Applications



Why MADNESS?

• Reduces S/W complexity
– MATLAB-like level of composition of scientific 

problems with guaranteed speed and precision
– Programmer not responsible for managing 

dependencies, scheduling, or placement

• Reduces numerical complexity
– Solution of integral not differential equations
– Framework makes latest techniques in applied math 

and physics available to wide audience 



Big picture
• Want robust algorithms that scale correctly with 

system size and are easy to write
• Robust, accurate, fast computation

– Gaussian basis sets: high accuracy yields dense 
matrices and linear dependence – O(N3)

– Plane waves: force pseudo-potentials – O(N3)

– O(N logmN logk) is possible, guaranteed  

• Semantic gap
– Why are our equations just O(100) lines but programs 

O(1M) lines?

• Facile path from laptop to exaflop



E.g., with guaranteed precision of 1e-6 form a 
numerical representation of a Gaussian in the 

cube  [-20,20]3, solve Poisson’s equation, and plot 
the resulting potential 

(all running in parallel with threads+MPI)

There are only two lines doing real work. First the Gaussian (g) is projected into
the adaptive basis to the default precision. Second, the Green’s function is applied.
The exact results are norm=1.0 and energy=0.3989422804.

output: norm of f 1.00000000e+00 energy 3.98920526e-01   



Compose directly in terms of
functions and operators

This is a Latex rendering of a 
program to solve the Hartree-Fock
equations for the helium atom

The compiler also output a C++
code that can be compiled without
modification and run in parallel

He atom
Hartree-Fock



“Fast” algorithms
• Fast in mathematical sense

– Optimal scaling of cost with accuracy & size

• Multigrid method – Brandt (1977)
– Iterative solution of differential equations
– Analyzes solution/error at different length scales

• Fast multipole method – Greengard, Rokhlin 
(1987)
– Fast application of dense operators
– Exploits smoothness of operators

• Multiresolution analysis
– Exploits smoothness of operators and functions 



The math behind the MADNESS

• Multiresolution

• Low-separation 
rank

• Low-operator 
rank

V 0⊂V 1⊂⋯⊂V n

V n=V 0+(V 1−V 0 )+⋯+ (V n−V n−1 )

f x1, , xn=∑
l=1

M

 l∏
i=1

d

f i
 l 

 xiO 

∥ f i
l ∥2=1  l0

A=∑
=1

r

u  v
TO 

0 v
T v=u

T u= 



  

How to “think” multiresolution 

• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer resolution 
grids, …

• Telescoping series

– Instead of using the most accurate representation, use the 
difference between successive approximations

– Representation on V0 small/dense; differences sparse

– Computationally efficient; possible insights

V 0⊂V 1⊂⋯⊂V n

V n=V 0+(V 1−V 0 )+⋯+ (V n−V n−1 )



  

Why “think” multiresolution?
• It is everywhere in nature/chemistry/physics

– Core/valence; high/low frequency; short/long range; 
smooth/non-smooth; atomic/nano/micro/macro scale

• Common to separate just two scales
– E.g., core orbital heavily contracted, valence flexible

– More efficient, compact, and numerically stable

• Multiresolution
– Recursively separate all length/time scales

– Computationally efficient and numerically stable

– Coarse-scale models that capture fine-scale detail







  

Another Key Component

• Trade precision for speed – everywhere
– Don’t do anything exactly

– Perform everything to O()

– Require 
• Robustness

• Speed, and

• Guaranteed, arbitrary, finite precision



Please forget about wavelets
• They are not central

• Wavelets are a convenient basis for spanning Vn-Vn-

1 and understanding its properties

• But you don’t actually need to use them
– MADNESS does still compute wavelet coefficients, but 

Beylkin’s new code does not

• Please remember this … 
– Discontinuous spectral element with multi-resolution 

and separated representations for fast computation with 
guaranteed precision in many dimensions.



Tree in reconstructed form.  Scaling function (sum) 
coefficients at leaf nodes.  Interior nodes empty.

Tree in compressed form.  Wavelet (difference) 
coefficients at interior nodes, with scaling functions 
coefficients also at root.  Leaf nodes empty.

Compression algorithm.  Starting from leaf nodes, scaling function
(sum) coefficients are passed to parent.  Parent “filters” the
childrens' coefficients to produce sum and wavelet (difference) 
coefficients at that level, then passes sum coefficients to its parent.

Reconstruction is simply the reverse processes.

To produce the non-standard form the compression algorithm is 
run but scaling function coefficients are retained at the leaf and
interior nodes.

Reconstructed

Compressed

Empty

Sum 
coefficients

Difference 
coefficients
Sum and difference  
coefficients



Addition is (most straightforwardly) performed in the compressed
form.  Coefficients are simply added with missing nodes being
treated as if zero.

Empty

Sum 
coefficients

Difference 
coefficients
Sum and difference  
coefficients

+



∂ f
∂ x

Differentiation (for simplicity here using central differences and Dirichlet boundary 
conditions) is applied in the scaling function basis.  To compute the derivative of the function 
in the box corresponding to a leaf node, we require the coefficients from the neighboring 
boxes at the same level. 
• If the neighboring leaf nodes exist, all is easy.  
• If it exists at a higher level,we can make the coefficients by recurring down from the parent
   using the two-scale relation. 
• If the neighbor exists at a finer scale, we must recur down until both neighbors are at the 
   same level.  

Hence, phrased as parallel computation on all leaf nodes , differentiation must search for 
neighbors in the tree at the same and higher levels, and may initiate computation at lower 
levels. It can also be phrased as a recursive descent of the tree, which can have advantages in 
reducing the amount of probes up the tree for parents of neighbors (esp. in higher dimensions).



∫K ( x− y ) f ( y) dy

Convolution The first step is to compress into non-standard form with scaling function and
wavelet coefficients at each interior node. Then, we can independently compute the 
contribution of each box (node) to the result at the same level of the tree.  Depending upon 
dimensionality, accuracy, and the kernel (K), we usually only need to compute the 
contributions of a box to itself and its immediate neighbors.  The support (i.e., level of 
refinement) of the result is very dependent on the kernel.  Here we consider convolution 
with a Gaussian (Green's function for the heat equation) which is a smoothing operator.  
After the computation is complete, we must sum down the tree to recover the standard form.  

Hence, phrased as computation on all the nodes in non-standard form, convolution requires 
compression and reconstruction, and during the computation communicates across the tree at 
the same level to add results into neighboring boxes and up to connect new nodes to parents.

1.0

2e-5 1e-2 0.3 1e-2 2e-5 0.00.0
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MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture

Intel Thread Building Blocks now the target for the intranode runtime
May more adopt more of TBB functionality
Open Community Runtime of great interest
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Runtime Objectives
● Scalability to 1+M processors ASAP

● Runtime responsible for 
● scheduling and placement, 
● managing dependencies & hiding latency

● Compatible with existing models (MPI, GA)

● Borrow successful concepts from Cilk, 
Charm++, Python, HPCS languages
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Why a new runtime?
• MADNESS computation is irregular & dynamic

– 1000s of dynamically-refined meshes changing 
frequently & independently (to guarantee precision)

• Because we wanted to make MADNESS itself 
easier to write not just the applications using it
– We explored implementations with MPI, Global Arrays, 

and Charm++ and all were inadequate

• MADNESS is helping drive
– One-sided operations in MPI-3, DOE projects in fault 

tolerance, ...
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Key runtime elements

• Futures for hiding latency and automating 
dependency management

• Global names and name spaces

• Non-process centric computing
– One-sided messaging between objects
– Retain place=process for MPI/GA legacy 

compatibility

• Dynamic load balancing
– Data redistribution, work stealing, 

randomization
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Futures
● Result of an 

asynchronous 
computation
– Cilk, Java, HPCLs,

C++0x

● Hide latency due 
to communication 
or computation

● Management of 
dependencies
– Via callbacks

int f(int arg);
ProcessId me, p;

Future<int> r0=task(p, f, 0);
Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0.  This is used as the argument
of a second task whose execution is deferred until 
its argument is assigned.  Tasks and futures can 
register multiple local or remote callbacks to 
express complex  and dynamic dependencies.
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Virtualization of data and tasks
Future: 
      MPI rank
      probe()
      set()
      get()

Future Compress(tree):
Future left = Compress(tree.left)  
Future right = Compress(tree.right)
return Task(Op, left, right)

Compress(tree)
Wait for all tasks to complete

Task:
      Input parameters
      Output parameters
      probe()
      run()
      get()

Benefits:  Communication latency & transfer time largely hidden
  Much simpler composition than explicit message passing
  Positions code to use “intelligent” runtimes with work stealing
  Positions code for efficient use of multi-core chips
  Locality-aware and/or graph-based scheduling
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Global Names

● Objects with global 
names with different 
state in each process
– C.f. shared[threads] 

in UPC; co-Array

● Non-collective 
constructor; 
deferred destructor
– Eliminates synchronization

class A : public WorldObject<A>
{

int f(int);
};
ProcessID p;
A a(world);
Future<int> b = 

a.task(p,&A::f,0);

A task is sent to the instance of a in process p.
If this has not yet been constructed the message
is stored in a pending queue.  Destruction of a
global object is deferred until the next user 
synchronization point.
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#define WORLD_INSTANTIATE_STATIC_TEMPLATES
#include <world/world.h>
using namespace madness;
class Foo : public WorldObject<Foo> {
    const int bar;
public:
    Foo(World& world, int bar) : WorldObject<Foo>(world), bar(bar)

{process_pending();}
    
    int get() const {return bar;}
};
int main(int argc, char** argv) {
    MPI::Init(argc, argv);
    madness::World world(MPI::COMM_WORLD);

    Foo a(world,world.rank()), b(world,world.rank()*10)

    for (ProcessID p=0; p<world.size(); p++) {
        Future<int> futa = a.send(p,&Foo::get);
        Future<int> futb = b.send(p,&Foo::get);
        // Could work here until the results are available
        MADNESS_ASSERT(futa.get() == p);
        MADNESS_ASSERT(futb.get() == p*10);
    }
    world.gop.fence();
    if (world.rank() == 0) print("OK!");
    MPI::Finalize();
}                       Figure 1: Simple client-server program implemented using WorldObject.
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#define WORLD_INSTANTIATE_STATIC_TEMPLATES
#include <world/world.h>

using namespace std;
using namespace madness;

class Array : public WorldObject<Array> {
    vector<double> v;
public:
    /// Make block distributed array with size elements
    Array(World& world, size_t size) 
        : WorldObject<Array>(world), v((size-1)/world.size()+1)
    {
        process_pending();
    };

    /// Return the process in which element i resides
    ProcessID owner(size_t i) const {return i/v.size();};

    Future<double> read(size_t i) const {
        if (owner(i) == world.rank())
            return Future<double>(v[i-world.rank()*v.size()]);
        else
            return send(owner(i), &Array::read, i);
    };

    Void write(size_t i, double value) {
        if (owner(i) == world.rank())
            v[i-world.rank()*v.size()] = value;
        else
            send(owner(i), &Array::write, i, value);
        return None;
    };
};

int main(int argc, char** argv) {
    initialize(argc, argv);
    madness::World world(MPI::COMM_WORLD);

    Array a(world, 10000), b(world, 10000);

    // Without regard to locality, initialize a and b
    for (int i=world.rank(); i<10000; i+=world.size()) {
        a.write(i, 10.0*i);
        b.write(i,  7.0*i);
    }
    world.gop.fence();

    // All processes verify 100 random values from each array
    for (int j=0; j<100; j++) {
        size_t i = world.rand()%10000;
        Future<double> vala = a.read(i);
        Future<double> valb = b.read(i);
        // Could do work here until results are available
        MADNESS_ASSERT(vala.get() == 10.0*i);
        MADNESS_ASSERT(valb.get() ==  7.0*i);
    }
    world.gop.fence();

    if (world.rank() == 0) print("OK!");
    finalize();
}

Complete example program illustrating the implementation and use of a crude, 
block-distributed array upon the functionality of WorldObject.
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Global Namespaces
● Specialize global names 

to containers
– Hash table, arrays, ...  

● Replace global pointer 
(process+local pointer) 
with more powerful 
concept

● User definable map from 
keys to “owner” process

class Index;  // Hashable
class Value {

double f(int);
};

WorldContainer<Index,Value> c;
Index i,j;  Value v;
c.insert(i,v);
Future<double> r = 

c.task(j,&Value::f,666);

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

A container is created mapping indices 
to values.

A value is inserted into the container.

A task is spawned in the process owning 
key j to invoke c[j].f(666).
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Multi-threaded architecture

RMI Server
(MPI or portals)

Incoming active
messages

Task dequeue

Incoming active
messages

Application
logical main

thread

Outgoing active messages

Work stealingMust augment with cache-aware 
algorithms and scheduling
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Some issues
• Excessive global barriers

– Termination detection for global algorithms on distributed mutable data structures

• Messy, nearly redundant code expressing variants of algorithms on 
multiple trees 
– Need some templates / code generation 

• Need efficient and easy way to aggregate data/work to exploit 
GPGPUs

• Efficient kernels for GPGPUs (single SM)
– Non-square matrices, shortish loops – performance problem

• Switching between single-/multi-thread tasks

• Efficient multi-threaded code for thread units sharing L1 
(e.g., BGQ, Xeon Phi)

• Multiple interoperable DSLs embedded in or generating general 
purpose language

• Kitchen sink environment – full interoperability between runtimes, 
data structures, external I/O libraries, etc.



Molecular Electronic Structure
Energy and
gradients

ECPs coming
(Sekino, 
Thornton)

Response
properties
(Vasquez, Yokoi,
Sekino)

Still not as 
functional as 
previous 
Python version 
of Yanai 

Spin density 
of solvated 
electron



Nuclear physics

J. Pei, G.I. Fann, Y. Ou, 
W. Nazarewicz
UT/ORNL

● DOE UNDEF
● Nuclei & neutron matter
● ASLDA
● Hartree-Fock Bogliobulov
● Spinors
● Gamov states

Imaginary part of the seventh eigen function 
two-well Wood-Saxon potential







Nanoscale photonics
(Reuter, Northwestern; Hill, Harrison ORNL)

Diffuse domain approximation for  interior boundary value problem; long-wavelength Maxwell equations; 
Poisson equation; Micron-scale Au tip 2 nm above Si surface with H2 molecule in gap – 107 difference between 
shortest and longest length scales.



Electron correlation (6D)
• All defects in mean-field model are ascribed to 

electron correlation
• Singularities in Hamiltonian imply for a two-electron atom

• Include the inter-electron distance in the wavefunction  
– E.g., Hylleraas 1938 wavefunction for He

– Potentially very accurate, but not systematically improvable, and (until 
recently) not computationally feasible for many-electron systems

• Configuration interaction expansion – slowly convergent

r1

r2

r12

  r1, r2, r1 2=1
1
2

r12⋯ as r12 0

  r1, r2, r1 2=exp −r1r21a r1 2⋯

  r1, r2,=∑
i

c i∣1
 i

r12
i 

 r2∣



x

y

 |x-y|

 |x-y|  x-y

 |x-y|

 y-x

 |x-y|

 |x-y|

 |x-y|

 |x-y|

 y-x

 x-y

 y-x

 x-y

In 3D, ideally must
be one box removed
from the diagonal

Diagonal box has
full rank

Boxes touching 
diagonal (face, edge,
or corner) have 
increasingly low rank

Away from diagonal
r = O(-log )
 

r = separation rank 

∣x− y∣=∑
=1

r

f  x g   y 
Partitioned SVD representation
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The way forward demands a 
change in paradigm

- by us chemists, the funding agencies, and the 
supercomputer centers

• A communal effort recognizing the increased cost 
and complexity of code development for modern 
theory beyond the petascale

• Coordination between agencies to develop and 
deploy new simulation capabilities in sustainable 
manner

• Re-emphasizing basic and advanced theory and 
computational skills in undergraduate and 
graduate education
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http://s2i2.org
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Summary
● We need radical changes in how we compose 

scientific S/W
− Complexity at limits of cost and human ability
− Need extensible tools/languages with support for code 

transformation not just translation
● Students need to be prepared for computing and 

data in 2020+ not as it was in 2000 and before
− Pervasive, massive parallelism 
− Bandwidth limited computation and analysis

●  An intrinsically multidisciplinary activity
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Do new science with

O(1) programmers
O(100,000) nodes
O(100,000,000) cores
O(1,000,000,000) 
threads & growing

•  Increasing intrinsic
 complexity of science

•  Complexity kills … sequential or parallel
– Expressing concurrency at extreme scale
– Managing the memory hierarchy

•  Semantic gap (Colella) 
– Why are equations O(100) lines but program is O(1M)
– What’s in the semantic gap – and how to shrink it?
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Wish list

● Eliminate gulf between theoretical innovation in small 
groups and realization on high-end computers

● Eliminate the semantic gap so that efficient parallel code 
is no harder than doing the math

● Enable performance-portable “code” that can be 
automatically migrated to future architectures

● Reduce cost at all points in the life cycle

● Much of this is pipe dream – but what can we  aspire to? 
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Scientific vs. WWW 
or mobile software

● Why are we not experiencing similar 
exponential growth in functionality?

– Level of investment; no. of developers?
– Lack of software interoperability and standards?
– Competition not cooperation between groups?
– Shifting scientific objectives?
– Are our problems intrinsically 

harder? 
– Failure to embrace/develop 

higher levels of composition?
– Different hardware complexity? 
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How do we write code for a 
machine that does not yet exist? 

• Nothing too exotic, e.g., the mix of SIMD and 
scalar units, registers, massive multi-threading, 
software/hardware managed cache, fast/slow & 
local/remote memory that we expect in 2018+

• Answer 1: presently cannot
– but it’s imperative that we learn how and deploy the 

necessary tools 

• Answer 2: don’t even try!
– where possible generate code from high level specs
– provides tremendous agility and freedom to explore 

diverse architectures
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Dead code

• Requires human labor 
– to migrate to future 

architectures, or
– to exploit additional

concurrency, or
– ... 

• By these criteria most
extant code is dead

• Sanity check
– How much effort is 

required to port to hybrid cpu+GPGPU?  

7 December 1969
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The language of 
many-body physics
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CCSD Doubles Equation
hbar[a,b,i,j] == sum[f[b,c]*t[i,j,a,c],{c}] -sum[f[k,c]*t[k,b]*t[i,j,a,c],{k,c}] +sum[f[a,c]*t[i,j,c,b],{c}] -sum[f[k,c]*t[k,a]*t[i,j,c,b],{k,c}] 

-sum[f[k,j]*t[i,k,a,b],{k}] -sum[f[k,c]*t[j,c]*t[i,k,a,b],{k,c}] -sum[f[k,i]*t[j,k,b,a],{k}] -sum[f[k,c]*t[i,c]*t[j,k,b,a],{k,c}] 
+sum[t[i,c]*t[j,d]*v[a,b,c,d],{c,d}] +sum[t[i,j,c,d]*v[a,b,c,d],{c,d}] +sum[t[j,c]*v[a,b,i,c],{c}] -sum[t[k,b]*v[a,k,i,j],{k}] 
+sum[t[i,c]*v[b,a,j,c],{c}] -sum[t[k,a]*v[b,k,j,i],{k}] -sum[t[k,d]*t[i,j,c,b]*v[k,a,c,d],{k,c,d}] -sum[t[i,c]*t[j,k,b,d]*v[k,a,c,d],
{k,c,d}] -sum[t[j,c]*t[k,b]*v[k,a,c,i],{k,c}] +2*sum[t[j,k,b,c]*v[k,a,c,i],{k,c}] -sum[t[j,k,c,b]*v[k,a,c,i],{k,c}] 
-sum[t[i,c]*t[j,d]*t[k,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[k,d]*t[i,j,c,b]*v[k,a,d,c],{k,c,d}] -sum[t[k,b]*t[i,j,c,d]*v[k,a,d,c],{k,c,d}] 
-sum[t[j,d]*t[i,k,c,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[i,c]*t[j,k,b,d]*v[k,a,d,c],{k,c,d}] -sum[t[i,c]*t[j,k,d,b]*v[k,a,d,c],{k,c,d}] 
-sum[t[j,k,b,c]*v[k,a,i,c],{k,c}] -sum[t[i,c]*t[k,b]*v[k,a,j,c],{k,c}] -sum[t[i,k,c,b]*v[k,a,j,c],{k,c}] 
-sum[t[i,c]*t[j,d]*t[k,a]*v[k,b,c,d],{k,c,d}] -sum[t[k,d]*t[i,j,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[k,a]*t[i,j,c,d]*v[k,b,c,d],{k,c,d}] 
+2*sum[t[j,d]*t[i,k,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[j,d]*t[i,k,c,a]*v[k,b,c,d],{k,c,d}] -sum[t[i,c]*t[j,k,d,a]*v[k,b,c,d],{k,c,d}] 
-sum[t[i,c]*t[k,a]*v[k,b,c,j],{k,c}] +2*sum[t[i,k,a,c]*v[k,b,c,j],{k,c}] -sum[t[i,k,c,a]*v[k,b,c,j],{k,c}] 
+2*sum[t[k,d]*t[i,j,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,d]*t[i,k,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,c]*t[k,a]*v[k,b,i,c],{k,c}] 
-sum[t[j,k,c,a]*v[k,b,i,c],{k,c}] -sum[t[i,k,a,c]*v[k,b,j,c],{k,c}] +sum[t[i,c]*t[j,d]*t[k,a]*t[l,b]*v[k,l,c,d],{k,l,c,d}] 
-2*sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[k,a]*t[l,b]*t[i,j,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,c,d],{k,l,c,d}] 
-2*sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,c,a]*v[k,l,c,d],{k,l,c,d}] 
-2*sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[l,b]*t[j,k,d,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,c,d],{k,l,c,d}] 
+4*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}] 
-2*sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,d,b]*v[k,l,c,d],
{k,l,c,d}] +sum[t[i,c]*t[j,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,j,c,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}] 
-2*sum[t[i,j,c,b]*t[k,l,a,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,j,a,c]*t[k,l,b,d]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,c]*t[k,b]*t[l,a]*v[k,l,c,i],
{k,l,c}] +sum[t[l,c]*t[j,k,b,a]*v[k,l,c,i],{k,l,c}] -2*sum[t[l,a]*t[j,k,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[l,a]*t[j,k,c,b]*v[k,l,c,i],{k,l,c}] 
-2*sum[t[k,c]*t[j,l,b,a]*v[k,l,c,i],{k,l,c}] +sum[t[k,a]*t[j,l,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[k,b]*t[j,l,c,a]*v[k,l,c,i],{k,l,c}] 
+sum[t[j,c]*t[l,k,a,b]*v[k,l,c,i],{k,l,c}] +sum[t[i,c]*t[k,a]*t[l,b]*v[k,l,c,j],{k,l,c}] +sum[t[l,c]*t[i,k,a,b]*v[k,l,c,j],{k,l,c}] 
-2*sum[t[l,b]*t[i,k,a,c]*v[k,l,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,c,a]*v[k,l,c,j],{k,l,c}] +sum[t[i,c]*t[k,l,a,b]*v[k,l,c,j],{k,l,c}] 
+sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,d,c],{k,l,c,d}] 
+sum[t[j,d]*t[l,a]*t[i,k,c,b]*v[k,l,d,c],{k,l,c,d}] -2*sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,d,c],{k,l,c,d}] 
-2*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,d,c],
{k,l,c,d}] +sum[t[i,k,c,b]*t[j,l,d,a]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[k,a]*t[l,b]*v[k,l,i,j],
{k,l}] +sum[t[k,l,a,b]*v[k,l,i,j],{k,l}] +sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[l,k,c,d],{k,l,c,d}] +sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[l,k,c,d],
{k,l,c,d}] +sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[l,k,c,d],{k,l,c,d}] -2*sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[l,k,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[l,a]*t[j,k,d,b]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,c,b]*t[k,l,a,d]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,a,c]*t[k,l,b,d]*v[l,k,c,d],
{k,l,c,d}] -2*sum[t[l,c]*t[i,k,a,b]*v[l,k,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,a,c]*v[l,k,c,j],{k,l,c}] +sum[t[l,a]*t[i,k,c,b]*v[l,k,c,j],{k,l,c}] 
+v[a,b,i,j]

h i j
a b

=〈a b
i j∣e− T 1−

T 2 H e
T 1

T 2∣0〉
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