
Caching in on Aggregation (extended abstract) 
Michael Ferguson, Laboratory for Telecommunication Sciences 

 
 The Chapel programming language features implicit communication, which has many advantages - such 

as allowing an implementation to separate data distribution from algorithm. One disadvantage of this model is 

that it can be difficult for a Chapel programmer to create large and efficient network messages. New compiler 

optimization can solve this problem in some cases, but such optimizations are difficult to write and only apply 

in certain circumstances. 
 Take the following program as an example. Suppose A is a remote array of 64-bit ints, and f is a 

computationally-intensive procedure. 
 // naive version, assume A is distributed 
 for i in 1..n { 
   A[i] = f(i); 
 } 

 // whole-array assignment version, A is distributed 
 var B:[1..n] int; 
 for i in 1..n { 
   B[i] = f(i); 
 } 
 B = A; 

 With the current compiler, each of the assignment operations in the loop in the naive version will 

generate a separate small message communicating a single 64-bit integer value, wait for it to be received and 

acknowledged, and then move on to the next value. The situation for reading from A is analogous. 
 However, if Chapel's whole-array operations are used, the program can be further optimized to the 

whole-array assignment version listed above. There are two problems with this approach. First, the obvious 

solution here might run out of memory if n is very large; in that case a programmer will need to instead 

create a more complicated tiled loop in order to bound the new local memory used. The second problem is 

that it hurts the Chapel promise of separating algorithm from data distribution since this modification has to 

be made in the algorithm code itself –  where we would like the body of the algorithm code to be able to 

ignore whether or not A is distributed. 
 In addition to the above difficulty in aggregating communications, a Chapel programmer has a difficult 

time providing explicit prefetching hints to the runtime. In the code below, the version on the left is the naive 

version, and the version on the right might be a version optimized for a single-processor, using the prefetch 

instructions that performance-minded programmers are already familiar with. 
 for i in 1..n { 
   sum +=  A[f(i)]; 
 } 

 for i in 1..n { 
   prefetch(A[i+8]); 
   sum += A[f(i)]; 
 } 

 Wouldn't it be nice if the same optimization technique (adding prefeteches) also applied to the 

distributed memory version, where the prefetches would cause the remote data to be fetched before it was 

needed? 

 
 We have developed a cache for remote data that is capable of aggregating writes, automatic prefetch for 

strided access, and prefetching data based on programmer-provided prefetch hints. In this talk, we will 

describe in detail the design of this cache and discuss how various design choices impact performance and 

the amount of communication. In addition, the most difficult part about adding such a cache for remote data 

is ensuring that Chapel programs still operate according to a reasonable memory consistency model. Through 

the process of developing this cache for remote data, we believe that we have the experience necessary to 

describe more fully the Chapel memory consistency model. We will informally describe the desired memory 

consistency model and then informally show how our caching scheme conforms to that model. 

 


