
CACHING IN ON AGGREGATION

Michael Ferguson	

mferguson@ltsnet.net

im
age credit: U

K
 N

ational A
rchives

MEMORY MODEL BACKGROUND

See Adve, S. V., Boehm, H.-J. 2010. Memory models: a case for rethinking parallel languages and hardware.
Communications of the ACM 53(8): 90–101. http://cacm.acm.org/magazines/2010/8/96610-memory-models-a-
case-for-rethinking-parallel-languages-and-hardware/fulltext

Memory model for 	

C11, C++11, Chapel:	

 data race free programs are	

sequentially consistent

http://cacm.acm.org/magazines/2010/8/96610-memory-models-a-case-for-rethinking-parallel-languages-and-hardware/fulltext

A RACY PROGRAM

Thread 1
x = f();
done = true;

Thread 2
while(!done) { }
print(x);

A RACY PROGRAM

Thread 1
x = f();
done = true;

Thread 2
while(!done) { }
print(x);

Thread 1
r1 = f();
done = true; x = r1;

Thread 2
r1 = done; while(!r1) { }
print(x);

compiler or processor

load x

prefetch

Compiler and processor would like to
start loads earlier in order to hide
memory latency. We’ll call that prefetch.

… = A[i]

store y

write behind

Compiler and processor would like to
complete stores later in order to hide
memory latency. We’ll call that write behind.

B[i] = …

load x

store y

prefetch

write behind

• Start loads early	

• Reuse values from earlier load	

• Aggregate loads

• Complete stores later	

• Aggregate many stores

into a single store

REMEMBER THE RACY PROGRAM?

Thread 1
x = f();
done = true;

Thread 2
while(!done) { }
print(x);

Thread 1
r1 = f();
done = true; x = r1;

Thread 2
r1 = done; while(!r1) { }
print(x);

compiler or processor

load x

store y

prefetch

write behind

acquire

release

COMMUNICATION OPTIMIZATION

Library of Congress

load x	

GET x

store y	

PUT y

prefetch

write behind

• Start GETs early	

• Reuse values from earlier GET	

• Aggregate GETs

• Complete PUTs later	

• Aggregate many PUTs

into a single PUT

CC Flickr/Daniel Jolivet

CC Flickr/Ben Salter

CC Flickr/ajmexico

La
te

nc
y

(m
in)

0

200

400

600

800

Number of Cars

1 2 4 8 16 32 64 128

TRAIN LATENCY (8 HOUR TRIP, 60 TON CARS, 60 SEC/CAR)

Ba
nd

w
id

th
 to

ns
/m

in

0

3

6

9

12

Number of Cars

1 2 4 8 16 32 64 128

TRAIN BANDWIDTH

CC Flickr/ChrisDag

La
te

nc
y

(n
s)

0

900

1800

2700

3600

Request Size (bytes)

8 16 32 64 128 256 512 1024

GASNET get
IB Benchmark
GASNET put

INFINIBAND (IB) LATENCY

Ba
nd

w
id

th
 M

B/
s

0

750

1500

2250

3000

Request Size (bytes)

8 16 32 64 128 256 512 1024

IB Benchmark
GASNET put
GASNET get

INFINIBAND (IB) BANDWIDTH
Max BW:	

5000 MB/s

FIXING IT
WITH A
CACHE	

Library of Congress

NO COHERENCY TRAFFIC

• Avoid a noisy coherency protocol	

• Aggregation, prefetch, and write-behind still work	

• Discard all cached data on acquire	

• Wait for pending operations on a release

ADDING IMPLIED FENCES

• acquire and release
triggered by task or on
statement spawn, join,
start, and finish

sync {	

 release	

 begin {	

 acquire	

 ….	

 release	

 }	

} acquire

release	

on {	

 acquire	

 …	

 release	

}	

acquire

CACHE PER PTHREAD

• Too hot: 1 cache per locale	

• complex implementation, slow locks, etc	

• Too cold: 1 cache per task	

• cache is probably bigger than task stack	

• Just right: 1 cache per pthread/core	

• easy to implement with pthread-local storage

OTHER DESIGN NOTES

• Allocates all cache memory only once	

• malloc takes ~1µs … infiniband latency is ~2µs!	

• Reads entire 64-byte cache-line at a time	

• Automatic write-behind and sequential read ahead	

• User-operable prefetch hint

USABILITY

Library of Congress

COPY EXAMPLE

var A:[1..n] int;	
var B:[1..n] int;	
on Locales[1] {	
 for i in 1..n {	
 B[i] = A[i];	
 }	
}

… = A[i] is a GET	

B[i] = … is a PUT	

!

 =>	

 n GETs *	

 	

 n PUTs	

!

* 5n GETs currently because
of array header loads

MESSY EXPLICIT AGGREGATION

var A:[1..n] int;	
var B:[1..n] int;	
on Locales[1] {	
 for i in 1..n by k{	
 B[i..k]=A[i..k];	
 } …	
}

• Array slices
currently very
heavy-weight	

• k depends on
hardware, not
problem	

• Tricky boundaries

PREFETCH EXAMPLE

var A:[1..n] int;	
on Locales[1] {	
 var sum:int;	
 for i in 1..n {	
 prefetch(A[f(i+k)]);	
 sum += A[f(i)];	
 }	
}

prefetch(…) is a
prefetch hint	

• just like cache

optimization	

• no awkward

handles

AWKWARD HANDLES?

var A:[1..n] int;	
on Locales[1] {	
 var sum:int;	
 var h[1..k]:…;	
 for i in 1..n {	
 h[…] = get_nb(A[f(i+k)])	
 sum += wait(h[…]);	
 } …	
}

var A:[1..n] int;	
on Locales[1] {	
 var sum:int;	
 for i in 1..n {	
 prefetch(A[f(i+k)]);	
 sum += A[f(i)];	
 }	
}

San Diego Air and Space Museum

BENCHMARKS

var A:[1..n] int;	
var B:[1..n] int;	
on Locales[1] {	
 for i in 1..n {	
 B[i] = A[i];	
 }	
}

COPY EXAMPLE

… = A[i] is a GET	

	

 and done in chunks of	

	

 1024 bytes with readahead	

!
B[i] = … is a PUT	

	

 and done in chunks of	

	

 1024 bytes with write-behind	

!
array header overhead removed	

!
56x speedup!

Ba
nd

w
id

th
 M

B/
s

0

50

100

150

200

Request Size (bytes)

8 16 32 64 128 256 512 1024

39
3

IB Benchmark
GASNET put
GASNET get
Copy
Copy+Cache

EXAMPLE PERFORMANCE

Ti
m

e
Ca

ch
e/

Ti
m

e
N

o
Ca

ch
e

0

0.25

0.5

0.75

1

1.25

copy rand read rand write

no cache
cache

SYNTHETIC BENCHMARKS

Ti
m

e
Ca

ch
e/

Ti
m

e
N

o
Ca

ch
e

0

0.25

0.5

0.75

1

1.25

LULESH miniMD minimMD' SSCA4 PTRANS

no cache
cache nl=2
cache nl=4
cache nl=8

APP BENCHMARKS

PREFETCH EXAMPLE

M
iB

/s

0

2

4

6

8

10

k (prefetch distance)

0 2 4 6 8 10 12 14 16

cache
no cache

2x

8x

var A:[1..n] int;	
on Locales[1] {	
 var sum:int;	
 for i in 1..n {	
 prefetch(A[f(i+k)]);	
 sum += A[f(i)];	
 }	
}

George Eastman House Collection

TASKING TROUBLE

core 1 core 2

remote data
cache

remote data
cache

core 1 core 2

remote data
cache

remote data
cache

pending prefetch or put

p

p

core 1 core 2

remote data
cache

remote data
cache

task descheduled e.g. in
syncvar$.read()

p

p

core 1 core 2

remote data
cache

remote data
cache p

p

core 1 core 2

remote data
cache

remote data
cache p

p

Problem: Operation
result is in wrong
thread-local storage!

core 1 core 2

remote data
cache

remote data
cache

Need
Separate
Task
Queues!

OTHER POSSIBLE SOLUTIONS

● Pending operations make tasks temporarily un-stealable	

● always flush pending operations before descheduling a task
and run an acquire fence when a task switches threads	

● block any descheduled task with pending operations on those
operations before it becomes runnable again and run an
acquire fence when a task switches threads.

Library of Congress

LOOKING INSIDE

64 byte cache lines

1024 byte cache page

Optional Dirty BitsValid Line Bits

CACHE ENTRY

● node	

● address	

● readahead trigger	

● min sequence number	

● max put sequence

number	

● max prefetch sequence

number

17 bits

Inspired by “Two Level Tree Structure for Fast Pointer Lookup” by Hans J Boehm

10 bits 17 bits 10 bits 10 bits

top half bottom half page
offset

top bits
bottom
bits

...top[top bits]

bottom[bottom bits]

page entries

... ...

...

Pointer Tree

per task:	

 last acquire sequence number

Am LRU

Dirty LRU

Free Lists

Ain

Aout

New Pages
...

... ...
...

2Q Queues

Operations Queue

Pointer Tree

CACHE DATA STRUCTURES

WRITE BEHIND

Write Recorded in Dirty Bits, Page added to Dirty Queue

Flushed on release or	

when there are too many dirty pages

GET with 2
earlier valid
lines triggers
synchronous
readahead

ra skip,len = 0

ra skip=1 pg len = 1 pg

READAHEAD

The next
GET triggers
asynchronous
readahead

ra skip=1 pg len = 1 pg

ra skip,len=0 ra skip=1 pg len =2 pg

ra skip,len=0 ra skip=1 pg len =2 pg

ra skip=2 pg len =4 pg

GET here triggers
more readahead

ra skip,len=0

Library of Congress

Cache for Remote Data:	

• is easy to use	

• works with naive applications	

• shows good benchmark speedups

