AL NG S EONN ACSC LA TN

SSAIYDUY [BUOIEN] DN 3PaJ4d 3ewl

Michael Ferguson
mferguson@ltsnet.net —

MIEPIORYT MOLEE BACKGROUINE

Memory model for
Cll1l,C++11,Chapel.:
data race free programs are
sequentially consistent

See Adve, S.V,, Boehm, H.-]. 2010. Memory models: a case for rethinking parallel languages and hardware.
Communications of the ACM 53(8): 90—101. http://cacm.acm.org/magazines/2010/8/966 1 0-memory-models-a-
case-for-rethinking-parallel-languages-and-hardware/fulltext

http://cacm.acm.org/magazines/2010/8/96610-memory-models-a-case-for-rethinking-parallel-languages-and-hardware/fulltext

AR Y FROIGRAG

Thread 1 Thread 2
x = f(); while(!done) { }
done = true; print(x);

AR Y FROIGRAG

Thread 1 Thread 2
x = f(); while(!done) { }
done = true; print(x);

compiler or processor

Thread 1 Thread 2
r1 = f(); r1 = done; while(Ir1) { }
done =true; x =r1; print(x);

prefetch

load X ... =AJi]

Compiler and processor would like to
start loads earlier in order to hide
memory latency. We'll call that prefetch.

Compiler and processor would like to
complete stores later in order to hide
memory latency. We'll call that write behind.

B[i] = ... store y

write behind

prefetch

load X

store y

Complete stores later
Aggregate many stores

into a single store

Start loads early
Reuse values from earlier load
Aggregate loads

write behind

REMEMBER TR e AL TR

Thread 1 Thread 2
x = f(); while(!done) { }
done = true; print(x);

compiler or processor

Thread 1 Thread 2
r1 = f(); r1 = done; while(Ir1) { }
done =true; x =r1; print(x);

acquire

load X

store y

release

COMMUNICATIONSCP | IMIZATION

y of Congress

- Librar

prefetch

GET x

store-y
PUT y

Complete PUTs later
Aggregate many PUTs

into a single PUT

Start GETs early
Reuse values from earlier GET
Aggregate GETs

write behind

TRA‘ N L/A\TE N CY (8 HOURTRIE 60 TON CARS, 60 SEC/CAR)

Latency (min)

| % 24 3 | 6 32 64 | 28

Number of Cars

TRAIN BANDWID I H

Bandwidth tons/min

| Vi 2 8 |6 52 64 | 28

Number of Cars

CC Flickr/ChrisDag

INFINIBAND (IB) LATENCY

£
O
(e
9
o

- GASNET get

D — |B Benchmark |
=— GASNET put
0
8 |6 30 64 | 28 256 S 1024

Request Size (bytes)

Bandwidth MB/s

INFINIBAND (IB) BANDWID TH

L ey e e A Max BW: 7
GASNET put 5000 MB/s
e - GMNEles | 0 o
O
7500
0
8 | 6 32 64 | 28 256 S 1624

Request Size (bytes)

.,

® ..
o»

CFIXING [T
WITH A
CACHE|

3
|
!
!

H Library of Congress

L COIE FRERIC Y R ARl

Avoid a noisy coherency protocol
Aggregation, prefetch, and write-behind still work
Discard all cached data on acquire

Wit for pending operations on a release

AL PLIEE) FEINC S

release sync {
on { release
acquire and release acquire begin {
triggered by task or on < acquire
statement spawn, join,
: release
start, and finish } release
acquire }

} acquire

(AL HiE PR P PIREALD)

Too hot: 1 cache per locale

complex implementation, slow locks, etc
Too cold: 1 cache per task

cache is probably bigger than task stack
Just right: 1 cache per pthread/core

easy to implement with pthread-local storage

Gl in et B S LB

Allocates all cache memory only once

malloc takes ~1ps ... infiniband latency is ~2ps!
Reads entire 64-byte cache-line at a time
Automatic write-behind and sequential read ahead

User-operable prefetch hint

v

L P EXAPI P

var A:[1..n] int; ... =Ali]isa GET
var B:[1..n] int; Blil=...isaPUT
on Locales[1] {
for i in1..n { => nGETs*
B[i] = A[i]: n PUTs

s *5n GETs currently because
¥ of array header loads

MiEss Y EXEEICT P AGGOREC/AT N

var A:[1..n] 1nt; Array slices
var B:[1. .n]l int; currently very
on Locales[1] { heavy-weight
fop L in' 1l .n f ° kdepends on
B[1i..k]=A[1..k]; hardware, not
1 problem

1 Tricky boundaries

FREPEEICH PXAMEL E

var A:[1..n] 1int; prefetch(...) is a
on Locales[1] {

. prefetch hint
var sum:int;

for i in 1 m i just like cache
(A[f(i+k)D); optimization

sum += A[f(1)]; no awkward

}} handles

AWKWARD HANDLES?

var A:[1..n] 1nt; var A:[1..n] 1nt;
on Locales[1] { on Locales[1] {
var sum:int; var sum:int;
for 1 ih 1 [%
(A[f(1+k)]); for 1 1in 1..n {
sum += A[f(1)];
} sSum +=
$ }
$

BENCHMARKS

San Diego Air and Space Museum

L P EXAPI P

. v A e B

var A: [1 = n:l -Lnt ’ and done in chunks of
var B: [1 . - ﬂ:l 1L[ghe - 1024 bytes with readahead
on Locales[1] 1 B[i] = ... is a PUT

for i1 1nl n { and done in chunks of

: . 1024 bytes with write-behind
Bl1] = Al1];
} array header overhead removed

$ =3 56x speedup!

EXANMELE peiRelCIRMANE P

Bandwidth MB/s

- |B Benchmark
GASNET put

— GASNET get
T Copy
> Copy+Cache

399

8 | 6 5 64 | 28 256 517 1024

Request Size (bytes)

Time Cache/Time No Cache

SYNTHETIC BENCHMARKS

B nho cache

copy

rand read

rand write

Time Cache/Time No Cache

APP BENCHMARKS

LU EST miniMD minimMD'

no cache

cache nl=2
cache nl=4
cache nl=8

SHC 0

PTRANS

FREEE T CRE B XML

e s cache
var A:[1..n] 1int; — no cache
on Locales[1] { o s P 0P

var sum:int;

for 1 ihl A4 4 ce s A s et
prefetehCANFCLalk) e & fand o 0 8x
sum += A[f(1)];

} e

§ 0

Crveide bee i ol el bl
k (prefetch distance)

L ™
3 -

B R "" :
1 o "
ouse Collection - -
- " -

remote data
cache

remote data
cache

pending prefetch or put

S

remote data remote data
cache cache p

task descheduled e.g. in

/ syncvar$.read()
R
e

remote data
cache

remote data
cache p

remote data

cache

remote data
cache p

Problem: Operation
result is in wrong
thread-local storage!

=

e

remote data
cache p

remote data
cache

core |

remote data
cache

remote data
cache

Need
Separate
Task
Queues!

L FIER POSSIBEE SO OIS

+ Pending operations make tasks temporarily un-stealable

- always flush pending operations before descheduling a task
and run an acquire fence when a task switches threads

» block any descheduled task with pending operations on those
operations before it becomes runnable again and run an
acquire fence when a task switches threads.

Library of Congress

LA E PR

 node

» address

* readahead trigger

* min sequence humber
* max put sequence
number

 max prefetch sequence

number /,

64 byte cache lines

J

1024 byte cache page

7/'

Valid Line Bits

Optional Dirty Bits

Pointer Tree

top bits
17 bits 10 bits
top half

top[top bits]

bottom[bottom bits]

page entries

..

bottom
bits
17 bits 10 bits
bottom half

S

4__

Inspired by “Two Level Tree Structure for Fast Pointer Lookup” by Hans J Boehm

10 bits

pPage
offset

CACHE PDIATA S ERUC T RES

New Pages \ E%B}mm
CErT.
(HH 11
- Pointer Tree
- o
Aout Dirty LRU
2Q Queues . =
Free Lists

per task:
Operations Queue last acquire sequence number

WRITE BEHIND

Write Recorded in Dirty Bits, Page added to Dirty Queue

Flushed on release or
when there are too many dirty pages

READAH EAD ra skip,len = 0

GET with 2 /

earlier valid l

lines triggers ra skip=1 pg len = 1 pg
synchronous

readahead

The next
GET triggers
asynchronous
readahead

¢

ra skip=1 pg len =1 pg

- °

ra skip,len=0

ra skip=1 pg len =2 pg

ra skip,len=0 ra skip=1 pg len =2 pg

/

GET here triggers l

more readahead
ra skip,len=0 ra skip=2 pg len =4 pg

Cache for Remote D

A

NGTE e

R w3

"..‘JJQWMQ- -~ -’:'" g
. . = {4

