Sandia
Exceptional service in the national interest @ National

Laboratories

Opportunities for Integrating
Tasking and Communication Layers

Dylan Stark
Brian Barrett

SERD, U-S. DEPARTMENT OF a)

4 Sy /I '.! b?‘&“ :) o .)) . -
4 (7)) VA" NS "5 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
G National Nuclear Security Administration

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia
SR i S ﬂ'l National

My Objectives for this Talk

1. Review how Chapel operates over multiple locales

2. Describe our unified runtime attempt

3. Talk about opportunities for Chapel to benefit from such an
approach

Sandia
National
Laboratories
A A J
(e — P N

Chapel Compilation Architecture

Chapel
Compiler
—-mmmmmmmmmmmEmm—_m—_—— =~ s
7 \
/ \
|
ggsfceel . Chapel-to-C Generated Cséac?nﬁirli .
Code | Compiler C Code & Linker :
: A A 3 I
I — | e S |
; | Internal Modules : | Runtime Support |
Standard | | (in Chapel) | Library (in C) I
Modules | o ol= I
(in Chapel)| , 2 ||S |2 I
7] 3 |
I S22
I I3 ||< I
\ g 8 .
o |9 Y
Yo o ____3_____, 7

Sandia
National
Laboratories
A A J
(el — P - N

Chapel Compilation Architecture

Chapel

Compiler

|
(S:EEEC(Z . Chapel-to-C Generated
Code Compiler C Code

a a

Standard
C Compiler
& Linker

A A

]
......................... S B
Internal Modules Runtime Support

|
|
I
|
Standard : (in Chapel) i | Library (in C)
I H
I
|
I

Modules
(in Chapel)

Aowa

speaiy] /syse|
uonesIUNWWoYD

, Run time bit

:
:
:
:
:
:
:
:
:
:
:
A

Your app.
Chapel During Run Time \ here /
* Runtime initialization

* Data movement

* Work Migration

Process 0 Process 1

Sandia
National
Laboratories

_ —
Parallel Job Launch

* (Skipping the details) * Start with Chapel-defined main()
e SPMD to the runtime defined in ‘runtime/src/main.c’

* OS Process == Locale

Process 0

_

Comm. Layer Initialization

* (CHPL_COMM-=gasnet)

* Shim calls chpl_comm_init()

* Registers active message

Process 1
e ~
N
C
_
handlers

e Sets up shared memory
segments

Sandia
National
Laboratories

Process 0 Process 1

_ _
Task Layer Initialization

* (CHPL_TASKS=gthreads) local resources and application
* Shim calls chpl_task_init() requirements

« Gathers information about the °* Forks a Pthread for Qthreads

Sandia
National
Laboratories

Process 0

4 N\

7

C

T
:
[}
[}
[}
[}
[}
| task magic
: happens
:
[}
[}
[}
[}
[}
[}
[}
[}
!

~

Task Layer Initialization

Process 1

task magic
happens

e EEEEEEEEEEEE s P ISTID)

—

* Qthreads is initialized in aux. Pthread context
* Number of worker threads equals number of cores

* Control returns to main Chapel RS thread

Sandia
National
Laboratories

Process 0 Process 1

Sandia
National
Laboratories

A

task magic
happens

task magic
happens

et k1121 D)

_ _
Progress Engine Start Up

* Another Pthread for a progress engine
* Loop polling GASNet

* chpl_task_yield() converted to OS sched_yield()

Process 0

et k1121 D)

task magic
happens

"schedule
main task"

Application Initiation

Process 1

task magic
happens

e i I 1D,

—

* Compiler-generated chpl_main() called to start application code
* Spawned as a task into the tasking layer (from outside)

* Caller “suspends” waiting for that task (really a Pthread mutex block)

Sandia
National
Laboratories

Process 0 Process 1

task magic
happens

task magic
happens

et k1121 D)
e i I 1D,

"schedule
main task"

_
Observations from Runtime Initialization

* Could do better at managing compute resources

* Calls from to the tasking layer from outside of tasks can have
asymmetric performance characteristics

Sandia
National
Laboratories

Process 0 Process 1

Sandia
National
Laboratories

s

J—
(]

— —
Data Movement

* Putand get operations are implemented in the comm. layer
* Direct mapping to GASNet
* Of note: core blocked during operation

Process 0 Process 1

Sandia
National
Laboratories

\
J
N
J

Al di
al| d

_
Work Migration

* 3 types: blocking, non-blocking, and “fast” remote fork
* Calling task loops — polling GASNet for completion and yielding

e Scheduler interference on the call side

Sandia
National _
Laboratories

A Unified Runtime Example

Applications
= Qthreads: Lightweight threading interface
= Scalable, lightweight scheduling on NUMA platforms
= Supports a variety of synchronization mechanisms, =
including full/empty bits and atomic operations OpenMP | Chapel g % §
= Potential for direct hardware mapping 7

= Portals 4: Lightweight communication interface

= Semantics for.supporhng both one-sided and tagged Scalable Parallel Runtime
message passing (SPR)
= Small set of primitives, allows offload from main CPU

= Supports direct hardware mapping
= Kitten: Lightweight OS kernel

= Builds on lessons from ASCI Red, Cplant, Red Storm Kitten

= Utilizes scalable parts of Linux environment

Qthreads

Portals

= Primarily supports direct hardware mapping

918

Ad_lanced ol =
Architectures s | S
Testbeds S| E
| wn

OpenMP API

' Qthreads API '

.......

OpenMPI
Implementation

/ \ 4
threads Task
Intel OpenMP < Runtime

Implementation Implementation

Portals4
Implementation

RCR Toolkit

Simulator Conv. and Adv.
Testbeds

Sandia
National
Laboratories

Task & Network Runtime Init. & Wiz

Process 0 Process 1

Sandia

Task & Network Runtime Init. & W&

Process 0 Process 1

task magic task magic
happens happens

ooy | | o

Progress Engine Start Up

Process 0 Process 1

@ '11 ﬁaa{ligil?al

Application initialization

Process 0 Process 1

task magic
happens

task magic
happens

"main task"

ﬁ

Process 0 Process 1

Sandia
National
Laboratories

—
/

— _
Data Movement in the SPR

* Blocking and non-blocking put and get operations
* (Calling task suspends, only resumes after completion event
* Progress engine only responsible for FEB operation

Process 0

{

J

Process 1

\
J

—

Work Migration in the SPR

Added qthread_fork_remote(..., rank)
Remote synchronization managed through FEB semantics

Messaging using memory pooling

Sandia
National
Laboratories

.
°%e
Se%2ee

Chapel with a Unified Runtime & @&,

= Replaced Qthreads & GASNet with SPR (Qthreads + Portals4)

Single point for initializing both platforms: spr_init(SPMD,...)

spr_unify() used to transition to single thread of control before
application starts

Most other interface functions are no-ops (e.g., chpl_task_init(),
chpl_comm_post_task_init(), chpl_comm_rollcall(), ...)

Direct mappings for data movement and work migration

Chapel with a Unified Runtime 2 @i,

= Both layers now share ...

= Platform information discovery (to make room for progress engine)

= Memory management (for activation records, stacks, network
packets)

= Synchronization mechanisms (such as full-empty support)

Chapel with a Unified Runtime 2 @i,

= But just an early point design

Could have been MPI, MassiveThreads, SHMEM, etc.

Could replace progress engine with prioritized tasks

Could have optimized for particular hardware

Could have. ...

Sandia

Opportunities Moving Forward & Wi

= Let third-party implementers worry about
= |nformation management (for incr. platform complexity)
= Coordinated resource management (1 PE today, ? tomorrow)

" |ntegrated local and remote task management (beyond command
+payload, optimized for new hardware, task/message aggregation)

= Consider that the runtime options are plentiful and just as
independent as the application space

Sandia
.;.;;@z_:_:;: m National

Opportunities Moving Forward % @

= Reorient Chapel Runtime Support shim interface around
unified “locality engine” (CHPL_LE=?)
= Resist early (de facto) standardization
= Focus on telling runtime what is needed/expected (declarative not
imperative)
= Open up runtime ecosystem to the increasing assortment of unified
runtimes (one size won't fit all)

= Add coarse-grain “Chapelle” interface (multi-resolution runtime
layers?)

= Start a runtime-centric working group to coordinate efforts
between compiler writers and RS implementers

