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My Objectives for this Talk

1. Review how Chapel operates over multiple locales

2. Describe our unified runtime attempt

3. Talk about opportunities for Chapel to benefit from such an
approach
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Your app.
Chapel During Run Time \ here /
* Runtime initialization

* Data movement

*  Work Migration
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Parallel Job Launch

*  (Skipping the details) * Start with Chapel-defined main()
e SPMD to the runtime defined in ‘runtime/src/main.c’

* OS Process == Locale
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Comm. Layer Initialization

* (CHPL_COMM-=gasnet)

*  Shim calls chpl_comm_init()

* Registers active message

Process 1
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handlers

e Sets up shared memory
segments
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Task Layer Initialization

* (CHPL_TASKS=gthreads) local resources and application
*  Shim calls chpl_task_init() requirements

« Gathers information about the °* Forks a Pthread for Qthreads
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Task Layer Initialization

Process 1

task magic
happens
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* Qthreads is initialized in aux. Pthread context
*  Number of worker threads equals number of cores

* Control returns to main Chapel RS thread
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Progress Engine Start Up

* Another Pthread for a progress engine
* Loop polling GASNet

* chpl_task_yield() converted to OS sched_yield()
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Application Initiation

Process 1

task magic
happens

e i I 1D,

—

*  Compiler-generated chpl_main() called to start application code
* Spawned as a task into the tasking layer (from outside)

* Caller “suspends” waiting for that task (really a Pthread mutex block)
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Observations from Runtime Initialization

*  Could do better at managing compute resources

*  Calls from to the tasking layer from outside of tasks can have
asymmetric performance characteristics
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Data Movement

* Putand get operations are implemented in the comm. layer
* Direct mapping to GASNet
* Of note: core blocked during operation
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Work Migration

* 3 types: blocking, non-blocking, and “fast” remote fork
* Calling task loops — polling GASNet for completion and yielding

e Scheduler interference on the call side
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A Unified Runtime Example

Applications
= Qthreads: Lightweight threading interface
= Scalable, lightweight scheduling on NUMA platforms
= Supports a variety of synchronization mechanisms, =
including full/empty bits and atomic operations OpenMP | Chapel g % §
= Potential for direct hardware mapping 7

= Portals 4: Lightweight communication interface

= Semantics for.supporhng both one-sided and tagged Scalable Parallel Runtime
message passing (SPR)
= Small set of primitives, allows offload from main CPU

= Supports direct hardware mapping
= Kitten: Lightweight OS kernel

= Builds on lessons from ASCI Red, Cplant, Red Storm Kitten

= Utilizes scalable parts of Linux environment

Qthreads

Portals

= Primarily supports direct hardware mapping
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OpenMP API

' Qthreads API '

.......

OpenMPI
Implementation

/ \ 4
threads Task
Intel OpenMP < Runtime

Implementation Implementation

Portals4
Implementation

RCR Toolkit

Simulator Conv. and Adv.
Testbeds
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Task & Network Runtime Init. & Wiz
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Progress Engine Start Up

Process 0 Process 1
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Application initialization
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Data Movement in the SPR

* Blocking and non-blocking put and get operations
* (Calling task suspends, only resumes after completion event
* Progress engine only responsible for FEB operation
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Work Migration in the SPR

Added qthread_fork_remote(..., rank)
Remote synchronization managed through FEB semantics

Messaging using memory pooling
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Chapel with a Unified Runtime & @&,

= Replaced Qthreads & GASNet with SPR (Qthreads + Portals4)

Single point for initializing both platforms: spr_init(SPMD,...)

spr_unify() used to transition to single thread of control before
application starts

Most other interface functions are no-ops (e.g., chpl_task_init(),
chpl_comm_post_task_init(), chpl_comm_rollcall(), ...)

Direct mappings for data movement and work migration
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= Both layers now share ...

= Platform information discovery (to make room for progress engine)

= Memory management (for activation records, stacks, network
packets)

= Synchronization mechanisms (such as full-empty support)
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= But just an early point design

Could have been MPI, MassiveThreads, SHMEM, etc.

Could replace progress engine with prioritized tasks

Could have optimized for particular hardware

Could have. ...
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= Let third-party implementers worry about
= |nformation management (for incr. platform complexity)
= Coordinated resource management (1 PE today, ? tomorrow)

" |ntegrated local and remote task management (beyond command
+payload, optimized for new hardware, task/message aggregation)

= Consider that the runtime options are plentiful and just as
independent as the application space
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Opportunities Moving Forward % @

= Reorient Chapel Runtime Support shim interface around
unified “locality engine” (CHPL_LE=?)
= Resist early (de facto) standardization
= Focus on telling runtime what is needed/expected (declarative not
imperative)
= Open up runtime ecosystem to the increasing assortment of unified
runtimes (one size won't fit all)

= Add coarse-grain “Chapelle” interface (multi-resolution runtime
layers?)

= Start a runtime-centric working group to coordinate efforts
between compiler writers and RS implementers




