
Evaluating Next Generation PGAS
Languages for Computational
Chemistry
CHIUW: Chapel Implementers and Users Workshop
(collocated with IPDPS’14)

Daniel Chavarr’a-Miranda
Joseph Manzano
Sriram Krishnamoorthy
Abhinav Vishnu

High Performance Computing
Pacific Northwest National Laboratory

1

Introduction/Motivation

! Computational Chemistry applications have made
extensive use of the PGAS paradigm
! Scalable, high performance implementations including

NWChem
! In particular, the Global Arrays (GA) PGAS library

! Need for PGAS comes from:
! Block-sparse data access patterns
! Load imbalance induced by those patterns

! Contrast to physics applications:
! Chemistry algorithms cannot easily exploit domain

decomposition and spatially constrained interactions
! Main mechanisms to enhance locality and reduce the scope of

inter-process communication
! Spatial & temporal locality on a block basis

2

Introduction/Motivation (cont.)

! Contrast to physics applications:
! Locations of the blocks in the global space is input- and

data-dependent
! Does not easily match common array distributions on the

participating processes
! Evaluate productivity & performance of next-generation

PGAS languages
! For computational chemistry algorithms
! Chapel & X10

! Selected a kernel from the Self-Consistent Field (SCF)
method
! Two-electron contribution to the Hartree-Fock matrix build
! Basis for higher-order methods
! Exhibits common behavior

3

Global Arrays – global-view distributed
dense arrays

! Global Arrays (GA) is a library-based partitioned global address
space (PGAS) programming model
! Focused on enabling global-view access to distributed dense

arrays
! Developed over the past 20 years
! High performance for production applications

4

Physically distributed data

Global Address Space

! GA focuses on providing one-sided access to
array slices in the global space

! GA_Put(), GA_Get(), GA_Acc() primitives
! Communication support is provided by the

Aggregate Remote Memory Copy Interface
(ARMCI) runtime

! Native ports over networks, as well as MPI ports
! SPMD control paradigm (same as MPI)

Two Electron Kernel

! Original code written using Global Arrays
! GA instances for the Schwarz, density and Fock matrices
! 2D block distribution of these matrices onto participating

processes
! Input: Schwarz and density matrices (read-only)
! Output: Fock matrix (read-write)

! Two electron contribution:
! Computationally sparse n4 calculation over n2 data space
! Organized as a set of n4 tasks which must be enumerated

and evaluated
! Most of the tasks do not add significant contributions to the

Fock matrix
! For larger inputs only <1% of them do

5

What is a task?

6

Schwarz density

Fock

get()
tiles

4-deep loop
nest w/

conditionals

Element-wise
accumulate()

Task execution
time varies widely!

Data sparsity in the Schwarz matrix

7

Sparse Tile Dense Tile

Determines which iterations (outer & inner) are
executed in 4-deep loop nest

Use 40 x 40 tiles in the code

Structure of the PGAS test codes

8

1." Read files with Schwarz and density matrices
! Captured from full SCF implementation

2." All process ranks/locales/places enumerate all n4 tasks
in a replicated manner
! Skips tasks that access Schwarz tiles that do not belong to

“me”
! According to array distribution

3." Locally obtain those Schwarz tiles, analyze them for
“non-zeroes”
! Skip tasks that only have elements below threshold

4." Get 2nd Schwarz tile for non-zero tasks
! May involve remote access
! Skip tasks where the absolute value of all elements is below

threshold

Structure of the PGAS test codes (cont.)

9

5." Compute “weight” of all tasks that passed tests
! Weight is the number of non-zeroes in the element-wise

product of the two Schwarz tiles
7." Load balance tasks on master rank/locale/place

! Sort tasks in reverse order of weight
! Distribute tasks to ranks/locales/places in round-robin

(cyclic) manner
! Very simple load balancing scheme suitable only for a few

ranks/locales/places (easy to implement !)
8." Each rank/locale/place executes its list of tasks

! Get Schwarz & density tiles, execute loop for each task,
element-wise accumulate onto Fock tiles

9." Compute checksum on Fock matrix at the end
! Validate correctness!

Work sparsity for tasks

10

0"

5000"

10000"

15000"

20000"

25000"

30000"

1" 5" 9" 13" 17" 21" 25" 29" 33" 37" 41" 45" 49" 53" 57" 61"

!"
#$

"%
&

'('
"

)*#+,''"*&-("

!"#$"%&'('"),*"./")*#+,''"0"1#+&12%3"#-13"

What if we execute tasks where the data is
located?

PGAS Implementations

! Baseline in GA with C++
! Uses SPMD execution, non-multithreaded

! Chapel version using 2D block distributed arrays
! Uses two levels of parallelism:

! Locales
! Multithreading for enumerating and executing tasks

! X10 version using 2D block distributed arrays
! Uses a single level of parallelism

! Places
! Closer to the GA version

! Array distribution is equivalent between GA & X10, but not
Chapel
! We are distributing onto less locales

11

Language idioms & constructs used (Chapel)

! dmaps() for 2D block distributed arrays
! Standard module “templated” list for task lists
! 2D local type for 40x40 tiles
! Multi-level parallelism

! coforall() over locales
! forall() inside each locale

! Tiled array assignment:
! s_ij = schwarz(lo (1)..hi(1), lo (2)..hi(2));

! Just works: from distributed array to local tile
! Seamless remote data access, even for non-arrays

! ftaskLists (locid).append(fvtinfo (i));

! Easy reductions:
! var gschwmax = max reduce schwarz ;

12

Language idioms & constructs used (X10)

! regionarrays for 2D block distributed arrays
! ArrayList for task lists
! 2D local type for 40x40 tiles
! Single-level parallelism

! One async per place
! finish (for p in Place.places ()) at (p) async { }

! Biggest difference between Chapel and X10:
! No remote access to data in X10
! Must ship asyncs() to place where data is and copy it

explicitly
! Easy reductions too:

! val schwmax = schwarz.reduce ((a: Double, b:
Double) => ((a > b) ? a : b),
Double.MIN_VALUE);

13

Subjective Qualitative Assessment

! Main differences:
! Very different control style between GA & Chapel, X10
! SPMD is really in your face in GA

! if (me == 0) {

! “Fork/join” feel in Chapel & X10
! Data access paradigm is very different in all three:

! GA: local data uses C/C++/Fortran semantics, global
space data uses library semantics

! Chapel: no syntactic distinction for local, remote accesses.
It’s all in the declarations.

! X10: no real remote access, must ship async() which can
capture input/output data

! Similarities:
! Distributed arrays are well supported in all three

paradigms
! Simpler “array distribution algebra” in GA, X10, richer in

Chapel 14

Experimental Results
! Ran on up two nodes of our local Infiniband cluster:

! Dual socket AMD Interlagos processors, 16 cores per socket, 64
GB RAM per node, QDR Infiniband

! Used GCC 4.7.2 as the underlying compiler
! Used OpenMPI 1.6.3 as the transport for X10 & Chapel

! Could not get native GASNET Infiniband to work " (SEGFAULT)
! Used up to two worker threads per X10 place
! Used ARMCI Infiniband native for GA
! Full optimization for all three versions

! Input size used:
! 64 atoms, resulting in 9602 Schwarz, density and Fock matrices
! 40 x 40 tiles
! 960 / 40 = 24; 244 = 331,776 total tasks
! 12,408 tasks after filtering (3.74%)

! Focus on execution time after tasks have been balanced

15

!"##$

!#"##$

!##"##$

!$ %$ &$ '$!($)%$

!"
#$

%
"&

%
'$

()
&

*'
%

+%),%()-$'%.'$*%

/0$(.1)&%!"#$%234%56)#'7%

*+$

,-./01$

2!#$
1.00$

10.00$

100.00$

1$ 2$ 4$ 8$ 16$ 32$

!"
#$

%
"&

%
'$

()
&

*'
%

+%),%()-$'%.'$*%

/0$(.1)&%!"#$%234%56)#'7%

GA$

Chapel$

X10$
!"##$

!#"##$

!##"##$

!%###"##$

!$ &$ '$ ($!)$ *&$

!"
#$

%
"&

%
'$

()
&

*'
%

+%),%()-$'%.'$*%

/0$(.1)&%!"#$%234%56)#'7%

+,$

-./012$

3!#$

Experimental Results (cont.)

16

! One node results:
! Chapel compiled with Ðlocal and CHPL_COMM=none
! Using from 1 to 32 cores (GA & X10 use more processes,

Chapel uses more threads)

Experimental Results (cont.)

17

! Two node performance was not competitive
! Chapel compiled with and CHPL_COMM=gasnet (MPI

substrate)

! Used bulk communication and strided optimizations, as well as
noRefCount

! X10 compiled with full optimization (-NO_CHECKS -
OPTIMIZE_COMMUNICATIONS)

! Communication pattern is complex
! Strided blocks spread all over the global space
! 4 input tiles, two output tiles

! Output tiles (Fock) have to be accumulated in an atomic
element-wise manner:

! fock(lo(1)..hi(1), lo(2)..hi(2)).fetchAdd(f_ij);
! gm(rp). getAndAdd (ta(ppos));

Conclusions/Future Work

! The syntactic and semantic elements of next-generation
PGAS languages are highly useful for computational
chemistry algorithms
! No major obstacles to implement code

! Control paradigm of both languages is quite different from
traditional HPC SPMD paradigm
! Fork/join flavor

! Data access paradigm differs between Chapel & X10
! Chapel has an RMA (Remote Memory Access) flavor
! X10 has an active message-like flavor

! Two dimensional block-distributed arrays well supported
in both languages
! Chapel has more flexibility & generality built in its array

algebra
18

Conclusions/Future Work (cont.)

! Chapel’s performance is competitive on one node
! More challenging on two nodes
! Due to the block-sparse access pattern? Atomic

accumulation for the Fock matrix?
! X10’s performance has more overhead on one node

! Scales better to two nodes
! Communication might be more explicit with Active

Messages?
! Explore more explicit (lower-level) expressions of the

code in Chapel
! In collaboration with the Chapel team !

! Opportunity to tune compilers/runtimes for this kind of
access pattern
! More detailed profile of where time is being spent

19

Acknowledgements

! Thanks to the Chapel team members for their help and
advice on the code
! Brad Chamberlain
! Vassily Litvinov

! Thanks to the X10 team members for their help and
advice on the code
! Dave Grove (IBM)
! Josh Milthorpe (Australian National University)

20

