
Evaluating Next Generation PGAS
Languages for Computational
Chemistry
CHIUW: Chapel Implementers and Users Workshop
(collocated with IPDPS’14)

Daniel Chavarría-Miranda
Joseph Manzano
Sriram Krishnamoorthy
Abhinav Vishnu

High Performance Computing
Pacific Northwest National Laboratory

1

Introduction/Motivation

! Computational Chemistry applications have made
extensive use of the PGAS paradigm
! Scalable, high performance implementations including

NWChem
! In particular, the Global Arrays (GA) PGAS library

! Need for PGAS comes from:
! Block-sparse data access patterns
! Load imbalance induced by those patterns

! Contrast to physics applications:
! Chemistry algorithms cannot easily exploit domain

decomposition and spatially constrained interactions
! Main mechanisms to enhance locality and reduce the scope of

inter-process communication
! Spatial & temporal locality on a block basis

2

Introduction/Motivation (cont.)

! Contrast to physics applications:
! Locations of the blocks in the global space is input- and

data-dependent
! Does not easily match common array distributions on the

participating processes
! Evaluate productivity & performance of next-generation

PGAS languages
! For computational chemistry algorithms
! Chapel & X10

! Selected a kernel from the Self-Consistent Field (SCF)
method
! Two-electron contribution to the Hartree-Fock matrix build
! Basis for higher-order methods
! Exhibits common behavior

3

Global Arrays – global-view distributed
dense arrays

! Global Arrays (GA) is a library-based partitioned global address
space (PGAS) programming model
! Focused on enabling global-view access to distributed dense

arrays
! Developed over the past 20 years
! High performance for production applications

4

Physically distributed data

Global Address Space

! GA focuses on providing one-sided access to
array slices in the global space
! GA_Put(), GA_Get(), GA_Acc() primitives

! Communication support is provided by the
Aggregate Remote Memory Copy Interface
(ARMCI) runtime
! Native ports over networks, as well as MPI ports

! SPMD control paradigm (same as MPI)

Two Electron Kernel

! Original code written using Global Arrays
! GA instances for the Schwarz, density and Fock matrices
! 2D block distribution of these matrices onto participating

processes
! Input: Schwarz and density matrices (read-only)
! Output: Fock matrix (read-write)

! Two electron contribution:
! Computationally sparse n4 calculation over n2 data space
! Organized as a set of n4 tasks which must be enumerated

and evaluated
! Most of the tasks do not add significant contributions to the

Fock matrix
! For larger inputs only <1% of them do

5

What is a task?

6

Schwarz density

Fock

get()
tiles

4-deep loop
nest w/

conditionals

Element-wise
accumulate()

Task execution
time varies widely!

Data sparsity in the Schwarz matrix

7

Sparse Tile Dense Tile

Determines which iterations (outer & inner) are
executed in 4-deep loop nest

Use 40 x 40 tiles in the code

Structure of the PGAS test codes

8

1.  Read files with Schwarz and density matrices
! Captured from full SCF implementation

2.  All process ranks/locales/places enumerate all n4 tasks
in a replicated manner
! Skips tasks that access Schwarz tiles that do not belong to

“me”
! According to array distribution

3.  Locally obtain those Schwarz tiles, analyze them for
“non-zeroes”
! Skip tasks that only have elements below threshold

4.  Get 2nd Schwarz tile for non-zero tasks
! May involve remote access
! Skip tasks where the absolute value of all elements is below

threshold

Structure of the PGAS test codes (cont.)

9

5.  Compute “weight” of all tasks that passed tests
! Weight is the number of non-zeroes in the element-wise

product of the two Schwarz tiles
7.  Load balance tasks on master rank/locale/place

! Sort tasks in reverse order of weight
! Distribute tasks to ranks/locales/places in round-robin

(cyclic) manner
! Very simple load balancing scheme suitable only for a few

ranks/locales/places (easy to implement J)
8.  Each rank/locale/place executes its list of tasks

! Get Schwarz & density tiles, execute loop for each task,
element-wise accumulate onto Fock tiles

9.  Compute checksum on Fock matrix at the end
! Validate correctness!

Work sparsity for tasks

10

0"

5000"

10000"

15000"

20000"

25000"

30000"

1" 5" 9" 13" 17" 21" 25" 29" 33" 37" 41" 45" 49" 53" 57" 61"

#"
of
"ta

sk
s"

process"rank"

#"of"tasks"per"GA"process"0"locality"only"

What if we execute tasks where the data is
located?

PGAS Implementations

! Baseline in GA with C++
! Uses SPMD execution, non-multithreaded

! Chapel version using 2D block distributed arrays
! Uses two levels of parallelism:

! Locales
! Multithreading for enumerating and executing tasks

! X10 version using 2D block distributed arrays
! Uses a single level of parallelism

! Places
! Closer to the GA version

! Array distribution is equivalent between GA & X10, but not
Chapel
! We are distributing onto less locales

11

Language idioms & constructs used (Chapel)

! dmaps() for 2D block distributed arrays
! Standard module “templated” list for task lists
! 2D local type for 40x40 tiles
! Multi-level parallelism

! coforall() over locales
! forall() inside each locale

! Tiled array assignment:
! s_ij = schwarz(lo(1)..hi(1), lo(2)..hi(2));

! Just works: from distributed array to local tile
! Seamless remote data access, even for non-arrays

! ftaskLists(locid).append(fvtinfo(i));
! Easy reductions:

! var gschwmax = max reduce schwarz;

12

Language idioms & constructs used (X10)

! regionarrays for 2D block distributed arrays
! ArrayList for task lists
! 2D local type for 40x40 tiles
! Single-level parallelism

! One async per place
! finish (for p in Place.places()) at (p) async { }

! Biggest difference between Chapel and X10:
! No remote access to data in X10
! Must ship asyncs() to place where data is and copy it

explicitly
! Easy reductions too:

! val schwmax = schwarz.reduce((a: Double, b:
Double) => ((a > b) ? a : b),
Double.MIN_VALUE);

13

Subjective Qualitative Assessment

! Main differences:
! Very different control style between GA & Chapel, X10
! SPMD is really in your face in GA

! if (me == 0) {

! “Fork/join” feel in Chapel & X10
! Data access paradigm is very different in all three:

! GA: local data uses C/C++/Fortran semantics, global
space data uses library semantics

! Chapel: no syntactic distinction for local, remote accesses.
It’s all in the declarations.

! X10: no real remote access, must ship async() which can
capture input/output data

! Similarities:
! Distributed arrays are well supported in all three

paradigms
! Simpler “array distribution algebra” in GA, X10, richer in

Chapel 14

Experimental Results
! Ran on up two nodes of our local Infiniband cluster:

! Dual socket AMD Interlagos processors, 16 cores per socket, 64
GB RAM per node, QDR Infiniband

! Used GCC 4.7.2 as the underlying compiler
! Used OpenMPI 1.6.3 as the transport for X10 & Chapel

! Could not get native GASNET Infiniband to work L (SEGFAULT)
! Used up to two worker threads per X10 place
! Used ARMCI Infiniband native for GA
! Full optimization for all three versions

! Input size used:
! 64 atoms, resulting in 9602 Schwarz, density and Fock matrices
! 40 x 40 tiles
! 960 / 40 = 24; 244 = 331,776 total tasks
! 12,408 tasks after filtering (3.74%)

! Focus on execution time after tasks have been balanced

15

1.00$

10.00$

100.00$

1$ 2$ 4$ 8$ 16$ 32$

Ti
m
e%
in
%se

co
nd

s%

#%of%cores%used%

Execu1on%Time%(64%atoms)%

GA$

Chapel$

X10$
1.00$

10.00$

100.00$

1$ 2$ 4$ 8$ 16$ 32$

Ti
m
e%
in
%se

co
nd

s%

#%of%cores%used%

Execu1on%Time%(64%atoms)%

GA$

Chapel$

X10$
1.00$

10.00$

100.00$

1,000.00$

1$ 2$ 4$ 8$ 16$ 32$

Ti
m
e%
in
%se

co
nd

s%

#%of%cores%used%

Execu1on%Time%(64%atoms)%

GA$

Chapel$

X10$

Experimental Results (cont.)

16

! One node results:
! Chapel compiled with –local and CHPL_COMM=none
! Using from 1 to 32 cores (GA & X10 use more processes,

Chapel uses more threads)

Experimental Results (cont.)

17

! Two node performance was not competitive
! Chapel compiled with and CHPL_COMM=gasnet (MPI

substrate)

! Used bulk communication and strided optimizations, as well as
noRefCount

! X10 compiled with full optimization (-NO_CHECKS -
OPTIMIZE_COMMUNICATIONS)

! Communication pattern is complex
! Strided blocks spread all over the global space
! 4 input tiles, two output tiles

! Output tiles (Fock) have to be accumulated in an atomic
element-wise manner:
! fock(lo(1)..hi(1), lo(2)..hi(2)).fetchAdd(f_ij);

! gm(rp).getAndAdd(ta(ppos));

Conclusions/Future Work

! The syntactic and semantic elements of next-generation
PGAS languages are highly useful for computational
chemistry algorithms
! No major obstacles to implement code

! Control paradigm of both languages is quite different from
traditional HPC SPMD paradigm
! Fork/join flavor

! Data access paradigm differs between Chapel & X10
! Chapel has an RMA (Remote Memory Access) flavor
! X10 has an active message-like flavor

! Two dimensional block-distributed arrays well supported
in both languages
! Chapel has more flexibility & generality built in its array

algebra
18

Conclusions/Future Work (cont.)

! Chapel’s performance is competitive on one node
! More challenging on two nodes
! Due to the block-sparse access pattern? Atomic

accumulation for the Fock matrix?
! X10’s performance has more overhead on one node

! Scales better to two nodes
! Communication might be more explicit with Active

Messages?
! Explore more explicit (lower-level) expressions of the

code in Chapel
! In collaboration with the Chapel team J

! Opportunity to tune compilers/runtimes for this kind of
access pattern
! More detailed profile of where time is being spent

19

Acknowledgements

! Thanks to the Chapel team members for their help and
advice on the code
! Brad Chamberlain
! Vassily Litvinov

! Thanks to the X10 team members for their help and
advice on the code
! Dave Grove (IBM)
! Josh Milthorpe (Australian National University)

20

