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Introduction/Motivation 

! Computational Chemistry applications have made 
extensive use of the PGAS paradigm 
! Scalable, high performance implementations including 

NWChem 
! In particular, the Global Arrays (GA) PGAS library 

! Need for PGAS comes from: 
! Block-sparse data access patterns 
! Load imbalance induced by those patterns 

! Contrast to physics applications: 
! Chemistry algorithms cannot easily exploit domain 

decomposition and spatially constrained interactions 
! Main mechanisms to enhance locality and reduce the scope of 

inter-process communication 
! Spatial & temporal locality on a block basis 
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Introduction/Motivation (cont.) 

! Contrast to physics applications: 
! Locations of the blocks in the global space is input- and 

data-dependent 
! Does not easily match common array distributions on the 

participating processes 
! Evaluate productivity & performance of next-generation 

PGAS languages 
! For computational chemistry algorithms 
! Chapel & X10 

! Selected a kernel from the Self-Consistent Field (SCF) 
method 
! Two-electron contribution to the Hartree-Fock matrix build 
! Basis for higher-order methods 
! Exhibits common behavior 
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Global Arrays – global-view distributed 
dense arrays 

! Global Arrays (GA) is a library-based partitioned global address 
space (PGAS) programming model 
! Focused on enabling global-view access to distributed dense 

arrays 
! Developed over the past 20 years 
! High performance for production applications 
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Physically distributed data 

Global Address Space 

! GA focuses on providing one-sided access to 
array slices in the global space 

! GA_Put(), GA_Get(), GA_Acc() primitives 
! Communication support is provided by the 

Aggregate Remote Memory Copy Interface 
(ARMCI) runtime 

! Native ports over networks, as well as MPI ports 
! SPMD control paradigm (same as MPI) 



Two Electron Kernel 

! Original code written using Global Arrays 
! GA instances for the Schwarz, density and Fock matrices 
! 2D block distribution of these matrices onto participating 

processes 
! Input: Schwarz and density matrices (read-only) 
! Output: Fock matrix (read-write) 

! Two electron contribution: 
! Computationally sparse n4 calculation over n2 data space 
! Organized as a set of n4 tasks which must be enumerated 

and evaluated 
! Most of the tasks do not add significant contributions to the 

Fock matrix 
! For larger inputs only <1% of them do 
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What is a task? 
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Schwarz density 

Fock 

get() 
tiles 

4-deep loop 
nest w/

conditionals 

Element-wise 
accumulate() 

Task execution 
time varies widely! 



Data sparsity in the Schwarz matrix 
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Sparse Tile Dense Tile 

Determines which iterations (outer & inner) are 
executed in 4-deep loop nest 

 
Use 40 x 40 tiles in the code 



Structure of the PGAS test codes 
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1." Read files with Schwarz and density matrices 
! Captured from full SCF implementation 

2." All process ranks/locales/places enumerate all n4 tasks 
in a replicated manner 
! Skips tasks that access Schwarz tiles that do not belong to 

“me” 
! According to array distribution 

3." Locally obtain those Schwarz tiles, analyze them for 
“non-zeroes” 
! Skip tasks that only have elements below threshold 

4." Get 2nd Schwarz tile for non-zero tasks 
! May involve remote access 
! Skip tasks where the absolute value of all elements is below 

threshold 



Structure of the PGAS test codes (cont.) 
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5." Compute “weight” of all tasks that passed tests 
! Weight is the number of non-zeroes in the element-wise 

product of the two Schwarz tiles 
7." Load balance tasks on master rank/locale/place 

! Sort tasks in reverse order of weight 
! Distribute tasks to ranks/locales/places in round-robin 

(cyclic) manner 
! Very simple load balancing scheme suitable only for a few 

ranks/locales/places (easy to implement ! ) 
8." Each rank/locale/place executes its list of tasks 

! Get Schwarz & density tiles, execute loop for each task, 
element-wise accumulate onto Fock tiles 

9." Compute checksum on Fock matrix at the end 
! Validate correctness! 



Work sparsity for tasks 
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What if we execute tasks where the data is 
located? 



PGAS Implementations 

! Baseline in GA with C++ 
! Uses SPMD execution, non-multithreaded 

! Chapel version using 2D block distributed arrays 
! Uses two levels of parallelism: 

! Locales 
! Multithreading for enumerating and executing tasks 

! X10 version using 2D block distributed arrays 
! Uses a single level of parallelism 

! Places 
! Closer to the GA version 

! Array distribution is equivalent between GA & X10, but not 
Chapel 
! We are distributing onto less locales 
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Language idioms & constructs used (Chapel) 

! dmaps() for 2D block distributed arrays 
! Standard module “templated” list for task lists 
! 2D local type for 40x40 tiles 
! Multi-level parallelism 

! coforall() over locales 
! forall() inside each locale 

! Tiled array assignment: 
! s_ij  = schwarz( lo (1)..hi(1), lo (2)..hi(2)); 

! Just works: from distributed array to local tile 
! Seamless remote data access, even for non-arrays 

!  ftaskLists ( locid ).append( fvtinfo ( i )); 

! Easy reductions: 
! var  gschwmax = max reduce schwarz ; 
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Language idioms & constructs used (X10) 

! regionarrays for 2D block distributed arrays 
! ArrayList for task lists 
! 2D local type for 40x40 tiles 
! Single-level parallelism 

! One async per place 
! finish (for p in Place.places ()) at (p) async  { } 

! Biggest difference between Chapel and X10: 
! No remote access to data in X10 
! Must ship asyncs() to place where data is and copy it 

explicitly 
! Easy reductions too: 

! val  schwmax = schwarz.reduce ((a: Double, b: 
Double) => ((a > b) ? a : b), 
Double.MIN_VALUE ); 
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Subjective Qualitative Assessment 

! Main differences: 
! Very different control style between GA & Chapel, X10 
! SPMD is really in your face in GA 

! if (me == 0) { 

! “Fork/join” feel in Chapel & X10 
! Data access paradigm is very different in all three: 

! GA: local data uses C/C++/Fortran semantics, global 
space data uses library semantics 

! Chapel: no syntactic distinction for local, remote accesses.  
It’s all in the declarations. 

! X10: no real remote access, must ship async() which can 
capture input/output data 

! Similarities: 
! Distributed arrays are well supported in all three 

paradigms 
! Simpler “array distribution algebra” in GA, X10, richer in 

Chapel 14 



Experimental Results 
! Ran on up two nodes of our local Infiniband cluster: 

! Dual socket AMD Interlagos processors, 16 cores per socket, 64 
GB RAM per node, QDR Infiniband 

! Used GCC 4.7.2 as the underlying compiler 
! Used OpenMPI 1.6.3 as the transport for X10 & Chapel 

! Could not get native GASNET Infiniband to work "  (SEGFAULT) 
! Used up to two worker threads per X10 place 
! Used ARMCI Infiniband native for GA 
! Full optimization for all three versions 

! Input size used: 
! 64 atoms, resulting in 9602 Schwarz, density and Fock matrices 
! 40 x 40 tiles 
! 960 / 40 = 24;  244 = 331,776 total tasks 
! 12,408 tasks after filtering (3.74%) 

! Focus on execution time after tasks have been balanced 

15 



!"##$

!#"##$

!##"##$

!$ %$ &$ '$ !($ )%$

!"
#$

%
"&

%
'$

()
&

*'
%

+%),%()-$'%.'$*%

/0$(.1)&%!"#$%234%56)#'7%

*+$

,-./01$

2!#$
1.00$

10.00$

100.00$

1$ 2$ 4$ 8$ 16$ 32$

!"
#$

%
"&

%
'$

()
&

*'
%

+%),%()-$'%.'$*%

/0$(.1)&%!"#$%234%56)#'7%

GA$

Chapel$

X10$
!"##$

!#"##$

!##"##$

!%###"##$

!$ &$ '$ ($ !)$ *&$

!"
#$

%
"&

%
'$

()
&

*'
%

+%),%()-$'%.'$*%

/0$(.1)&%!"#$%234%56)#'7%

+,$

-./012$

3!#$

Experimental Results (cont.) 
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! One node results: 
! Chapel compiled with Ðlocal  and CHPL_COMM=none 
! Using from 1 to 32 cores (GA & X10 use more processes, 

Chapel uses more threads) 



Experimental Results (cont.) 
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! Two node performance was not competitive 
! Chapel compiled with and CHPL_COMM=gasnet  (MPI 

substrate) 

! Used bulk communication and strided optimizations, as well as 
noRefCount 

! X10 compiled with full optimization (-NO_CHECKS -
OPTIMIZE_COMMUNICATIONS) 

! Communication pattern is complex 
! Strided blocks spread all over the global space 
! 4 input tiles, two output tiles 

! Output tiles (Fock) have to be accumulated in an atomic 
element-wise manner: 

! fock(lo(1)..hi(1), lo(2)..hi(2)).fetchAdd(f_ij); 
! gm( rp ). getAndAdd (ta( ppos )); 



Conclusions/Future Work 

! The syntactic and semantic elements of next-generation 
PGAS languages are highly useful for computational 
chemistry algorithms 
! No major obstacles to implement code 

! Control paradigm of both languages is quite different from 
traditional HPC SPMD paradigm 
! Fork/join flavor 

! Data access paradigm differs between Chapel & X10 
! Chapel has an RMA (Remote Memory Access) flavor 
! X10 has an active message-like flavor 

! Two dimensional block-distributed arrays well supported 
in both languages 
! Chapel has more flexibility & generality built in its array 

algebra 
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Conclusions/Future Work (cont.) 

! Chapel’s performance is competitive on one node 
! More challenging on two nodes 
! Due to the block-sparse access pattern?  Atomic 

accumulation for the Fock matrix? 
! X10’s performance has more overhead on one node 

! Scales better to two nodes 
! Communication might be more explicit with Active 

Messages? 
! Explore more explicit (lower-level) expressions of the 

code in Chapel 
! In collaboration with the Chapel team !  

! Opportunity to tune compilers/runtimes for this kind of 
access pattern 
! More detailed profile of where time is being spent 
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