
Programmer-Guided 
Reliability in Chapel

David E. Bernholdt, Wael R. 
Elwasif, Christos Kartsaklis, 
Seyong Lee, Tiffany M. Mintz
Oak Ridge National Laboratory



System Reliability at Extreme Scale

• All trends suggest increasing concerns about system reliability 
at extreme scales
– Increasing node/component counts
– Lithographic process shrinkage
– Near-threshold voltage operation
– Dynamic power management (thermal variability)

• Silent data corruption (SDC) is particularly insidious
– Transient error causing bits to get flipped in storage, transmission, or 

computational logic
– Typically due to cosmic ray strike, thermal or electrical fluctuation, etc.
– Hard to get a handle on (they’re “silent”!)
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How to Address Reliability Concerns?

• To date, applications have generally relied on hardware to 
detect (and where possible correct) errors

• Hardware-only solutions cost $, power, performance
– Also tend to be blunt instruments

• Can we use software-based or HW+SW approaches to 
provide more tailored, more “efficient” solutions
– Some parts of program are more vulnerable than others
– Protecting key parts application may suffice

• Programmer generally knows much more about their code 
than the compiler can infer
– Need ways to capture and communicate to compiler/system
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Our Focus
• Understanding impact of and responses to transient errors 

at application level
– Particularly silent data corruption

• Software-based techniques for error detection/correction
– Potential for more flexible and tailored approach to reliability
– Leverage programmer understanding of application
– Can use special features of HW or lower SW layers, as available

• Understand efficacy of error detectors and their costs in 
energy and performance
– (In time) identify patterns and automate, as possible
– Locate application in R-E-P trade space and move around in 

controlled manner

• Not addressing fail-stop errors in this project
– Plenty of interesting R&D there too, but orthogonal
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Our Approach

1. Select demonstration applications
2. Instrument applications with various error detectors or 

correctors
– Develop language extensions to capture such annotations and 

succinctly express common error detection patterns

3. Measure efficacy of error detectors, and their impact on 
performance and power through fault injection experiments
– Develop models of resilience, energy, and performance (R-E-P) 

behaviors

4. Develop runtime back-end to dynamically move application 
in R-E-P trade space

• Using Chapel as implementation language
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Selected Demonstration Applications
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Application Description Source Chapel 
Port

Status

SSCA#1 Bioinformatics Benchmark Partial (1st

of 4 kernels)
Under 
study

SSCA#2 Graph analysis Benchmark Pre-existing Under 
study

SSCA#3 Synthetic aperture 
radar and I/O

Benchmark Except FFT, 
IO

Under 
study

LULESH Shock hydrodynamics LLNL co-design 
center mini-
application

Pre-existing Under 
study

HPCCG Conjugate gradient 
solver

SNL Mantevo mini-
application

Planned Planned



Error Detectors and Correctors

• Code provided by programmer to detect and possibly 
correct (data) errors
– May utilize properties of algorithm, problem space, domain
– Like assertions or contracts, see also containment domains

• Detectors will vary in efficacy (ability to detect errors), and 
have costs in both performance and energy usage

• Prefer detectors with “knobs” giving variable levels of 
protection (with different costs)
– i.e. frequency of verifying checksums

• Core capability is detection of errors
– Correction typically more complicated, requires more resources, 

may or may not be feasible
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Error Detection Based on Problem 
Symmetry (LULESH)

• LULESH is a shock 
hydrodynamics code that 
assumes a spherically-
symmetric  problem
– Computation retains some 

symmetrically redundant elements

• Error detector exploits symmetry 
to detect and correct
– Correction replaces with average 

(not the literally correct value)
– Iterative algorithm eventually 

completes the “correction”

• Possible “knobs”
– Frequency of verification
– Density of sampling
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void symmetry_errordetectorNrecovery() {

// Loop over 3d problem space
for (plane=0; plane<edgeNodes; ++plane) {

for (row=0; row<edgeNodes; ++row) {
for (col=0; col<edgeNodes; ++col) {

//Compare the current position vec.           
//with three symmetric counterparts

if( asymmetry is found ) {
//Update the current position vector 
//with average symmetric partners
}

}
}

}
}

void symmetry_errordetectorNrecovery() {

// Loop over 3d problem space
for (plane=0; plane<edgeNodes; ++plane) {

for (row=0; row<edgeNodes; ++row) {
for (col=0; col<edgeNodes; ++col) {

//Compare the current position vec.           
//with three symmetric counterparts

if( asymmetry is found ) {
//Update the current position vector 
//with average symmetric partners
}

}
}

}
}



Error Detection Based on Known 
Ranges (SSCA#2)
• Graph analytics application

– Computes betweenness centrality metrics
– Primary data structure is a table of vertices, each 

with a weight and set of edges, read-only after generated

• Error detector checks that edges connect to valid vertices
– Would not detect an erroneous entry that pointed to a valid vertex
– Does not correct errors

• Possible “knobs”
– Frequency of verification
– Density of sampling
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proc checkEdges(){

return || reduce [ s in vertices ]                  
(|| reduce [ n in Neighbors(s)]

(n > 2**SCALE || n < 0));
}



Using Checksums to Detect Errors 
(SSCA#3)
• Synthetic aperture radar processing application

– Two stages process SAR data into images
– Two stages compare images for target detection

• Error detector computes a checksum on a 
large “state” data structure which is read-mostly
– Detection only
– Correction would require redundant storage of state

• Possible “knobs”
– Frequency of verification
– Strength of checksum
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if(!crc_cmp((crc_t *)state, sizeof(state_t),state_crc_chksum))
{
fprintf(stderr,"\nPossible bit flip in 'state' struct\n");
exit(1);

}

if(!crc_cmp((crc_t *)state, sizeof(state_t),state_crc_chksum))
{
fprintf(stderr,"\nPossible bit flip in 'state' struct\n");
exit(1);

}
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Blockwise Checksum with Rollback 
(SSCA#1)

• Bioinformatics optimal pattern 
matching application
– Pairwise local alignment of 

sequences (Smith-Waterman)

• Error detector checksums large 
sequence data structures in 
blocks
– Checksums can be verified as 

sequence is processed

• Possible “knobs”
– Block size
– Frequency of verification
– Strength of checksum
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TMR with Packed Data (SSCA#1)

• A key integer value is 
known to have a limited 
range (21 bits)

• Pack three copies into one 
64-bit integer
– Triply redundant storage

Vp = uint21_rel_unpack(V(j));
V(j) = uint21_rel_pack(max(0, E, F(j), G));

if (uint21_rel_unpack(V(j)) >= minScore && 
W>0.0 && uint21_rel_unpack(V(j))==G

&& (j==m || i==n || 
weights(mainSeq(i+1), matchSeq(j+1))<=0.0)) 
{  // core computation

considerAdding(V, goodEnds, goodScores,
minScore, report, minSeparation, I, 
j, sortReports, maxReports);

}

E = max(E - gapExtend, 
uint21_rel_unpack(V(j)) - gapFirst);
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OO Methodology for Error Detectors in 
Chapel

• Construct classes to provide 
variable levels of protection to 
data and methods that provide 
different levels of 
protection/detection in 
processing

• Provide “quality of protection” 
weights for different approaches

• Provide methods to raise, lower, 
and reset (to highest or lowest) 
protection
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class array_cnt_csum : array { 
type t; var len: int; var data: [1..len] t;  // arguments
var hash : int; // internal protection
proc plevel() { return (2); } // protection level
proc calculate() : int { return ((+ reduce data) : int); } 
proc commit() { hash = calculate(); } 
proc check() { assert(hash == calculate()); } 
proc get(i) : t { return (data(i)); } 
proc set(i,v) { data(i) = v; } 
proc pup() : array { // switch to next protection level

var r = new array_tmr(t, len); 
for i in {1..r.len} { r.data(i,1..3) = (get(i), get(i) ,get(i)); } 
return (r); 

} 
proc pdown() : array { // switch to next protection level

var r = new array_bare(t, len); 
r.data = data; 
return (r); 

}
… // pre- and post- checks



OO Methodology (continued)
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class dot_functor_dmr : dot_functor { 
var d1, d2; 
proc plevel() { return (2); } 
proc run() : int { // Execute twice and compare

const r1 = d1.run(); 
const r2 = d2.run(); 
assert(r1 == r2); 
return (r1); 

} 
proc pdown() : dot_functor { // next protection level

return (new dot_functor_default(d1.n, d1.x, d1.y)); 
} 

}

// create two protected arrays, level 1: 
var p1 : array = new array_bare(int, 3, v1); 
var p2 : array = new array_bare(int, 3, v2); 
var d : dot_functor = nil; var r : int = 0; 
d = new dot_functor_default(3, p1, p2); 
r = d.run();
// increase level of p1: 1 -> 2 
pup(p1); 
d = new dot_functor_default(3, p1, p2); 
r = d.run();
// reset p1 & p2's levels 
pmin(p1); 
pmin(p2); 
// increase the functor's level 
pup(d); 
r = d.run();



Fault Injection Studies

• Initially: exploratory, to help identify vulnerable code/data
• Then: characterize efficacy of detector as function of “knob” 

settings
– Measure energy, performance costs
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Vulnerabilities to Fault Injection 
(LULESH)
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Efficacy of Symmetry-Based Error 
Detector/Corrector (LULESH)
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Combining Error Detection with 
Checkpoint/Restart (LULESH)
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Magnitudes of Errors Observed 
(SSCA#2)

• Inject faults into edge lists only
• Inject only between computational kernels

– In these examples, after kernel 3

• Look at results for betweenness centrality 
metric (Kernel 4)
– Two approximate metrics (16, 32 starting 

vertices), exact metric
– Variation due to errors significant larger in 16 

metric than in 32 or exact
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Comparing Different Checksums 
(SSCA#3)

• CRC and Fletcher checksums 
of data structure
– Markedly different efficacies
– CRC-32 catches all errors for 

these cases
– Cost of all CRC variants is the 

same (< 6% variation)
– Fletcher-16 more expensive than 

Fletcher-32
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Errors Missed (up to 4096 b messages)

Performance (up to 256 kb messages)



Runtime Adaptation in R-E-P Trade Space

• Module in runtime to control “knobs” in error detectors
– Informed by models of R-E-P behavior of detector

• Static settings (life of job) and dynamic control possible
Some approaches for dynamic control…
• Profile-based

– Select error detectors based on execution phases in application profile
• Performance/energy-driven

– Select best error detectors while staying within given E-P limits
• Symptom-based

– Vary R depending on fault notifications
• Prediction-based

– Choose R based on observed symptoms
– Find best E-P point for chosen R
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Extending Chapel to Support 
Programmer-Guided Reliability
• Initially

– Programmer-provided code for error detection
• May be intertwined with computational code
• Can use OO techniques to “wrap up” a data structure with error detection

– Need to be able to associate error detector control variable or 
reconfiguration routine with cost model

• Eventually
– Identify reliability “patterns” that are common, reusable
– Implement within module, or generate in compiler
– Guide via annotations on target code

• Question
– Try to cast as “regular code” or as directives/pragmas?
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Possibilities for Registration of 
Detectors

2014-05-23 Chapel Implementers and Users Workshop23

pgr.register( detector_name, reconfig, cost);
error detector // using R as parameter to define 

// level of protection

As normal code?

pragma pgr.register( detector_name, reconfig, cost);
error detector // using R as parameter to define 

// level of protection

As a pragma?

//$pgr register( detector_name, reconfig, cost);
error detector // using R as parameter to define 

// level of protection

As a structured comment?



Possible “Automatic” Instantiations of 
Common Error Detection Patterns
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const: D: domain(2) = [1..10, 1..10];
var A: [D] real protect(checksum);

Array declaration with “protect” attribute

begin(tmr) result = important(stuff);

Task executed with triple redundancy

iter squares(n: int): int monotonic {
for i in 1..n do
yield i*i;

}

Iterator declaration with “monotonic” contract

var limited = float(-1.0, 1.0)

Declare variable with limited range of validity



Summary
• Trends suggest that errors are going to get worse

– Silent data corruption is particularly worrisome

• Applications will need to play an active role in detecting (and 
correcting) errors

• Programmers know much about what could go wrong and the impact 
it could have

• Give programmers tools to capture that information in the code
– Automate common error detection patterns

• Give runtime capability to manage programmer-provided error 
detection
– Need to connect detectors to back-end
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