
Programmer-Guided
Reliability in Chapel

David E. Bernholdt, Wael R.
Elwasif, Christos Kartsaklis,
Seyong Lee, Tiffany M. Mintz
Oak Ridge National Laboratory

System Reliability at Extreme Scale

• All trends suggest increasing concerns about system reliability
at extreme scales
– Increasing node/component counts
– Lithographic process shrinkage
– Near-threshold voltage operation
– Dynamic power management (thermal variability)

• Silent data corruption (SDC) is particularly insidious
– Transient error causing bits to get flipped in storage, transmission, or

computational logic
– Typically due to cosmic ray strike, thermal or electrical fluctuation, etc.
– Hard to get a handle on (they’re “silent”!)

2014-05-23 Chapel Implementers and Users Workshop2

How to Address Reliability Concerns?

• To date, applications have generally relied on hardware to
detect (and where possible correct) errors

• Hardware-only solutions cost $, power, performance
– Also tend to be blunt instruments

• Can we use software-based or HW+SW approaches to
provide more tailored, more “efficient” solutions
– Some parts of program are more vulnerable than others
– Protecting key parts application may suffice

• Programmer generally knows much more about their code
than the compiler can infer
– Need ways to capture and communicate to compiler/system

2014-05-23 Chapel Implementers and Users Workshop3

Our Focus
• Understanding impact of and responses to transient errors

at application level
– Particularly silent data corruption

• Software-based techniques for error detection/correction
– Potential for more flexible and tailored approach to reliability
– Leverage programmer understanding of application
– Can use special features of HW or lower SW layers, as available

• Understand efficacy of error detectors and their costs in
energy and performance
– (In time) identify patterns and automate, as possible
– Locate application in R-E-P trade space and move around in

controlled manner

• Not addressing fail-stop errors in this project
– Plenty of interesting R&D there too, but orthogonal

2014-05-23 Chapel Implementers and Users Workshop4

Our Approach

1. Select demonstration applications
2. Instrument applications with various error detectors or

correctors
– Develop language extensions to capture such annotations and

succinctly express common error detection patterns

3. Measure efficacy of error detectors, and their impact on
performance and power through fault injection experiments
– Develop models of resilience, energy, and performance (R-E-P)

behaviors

4. Develop runtime back-end to dynamically move application
in R-E-P trade space

• Using Chapel as implementation language

2014-05-23 Chapel Implementers and Users Workshop5

Selected Demonstration Applications

2014-05-23 Chapel Implementers and Users Workshop6

Application Description Source Chapel
Port

Status

SSCA#1 Bioinformatics Benchmark Partial (1st

of 4 kernels)
Under
study

SSCA#2 Graph analysis Benchmark Pre-existing Under
study

SSCA#3 Synthetic aperture
radar and I/O

Benchmark Except FFT,
IO

Under
study

LULESH Shock hydrodynamics LLNL co-design
center mini-
application

Pre-existing Under
study

HPCCG Conjugate gradient
solver

SNL Mantevo mini-
application

Planned Planned

Error Detectors and Correctors

• Code provided by programmer to detect and possibly
correct (data) errors
– May utilize properties of algorithm, problem space, domain
– Like assertions or contracts, see also containment domains

• Detectors will vary in efficacy (ability to detect errors), and
have costs in both performance and energy usage

• Prefer detectors with “knobs” giving variable levels of
protection (with different costs)
– i.e. frequency of verifying checksums

• Core capability is detection of errors
– Correction typically more complicated, requires more resources,

may or may not be feasible
2014-05-23 Chapel Implementers and Users Workshop7

Error Detection Based on Problem
Symmetry (LULESH)

• LULESH is a shock
hydrodynamics code that
assumes a spherically-
symmetric problem
– Computation retains some

symmetrically redundant elements

• Error detector exploits symmetry
to detect and correct
– Correction replaces with average

(not the literally correct value)
– Iterative algorithm eventually

completes the “correction”

• Possible “knobs”
– Frequency of verification
– Density of sampling

2014-05-23 Chapel Implementers and Users Workshop8

void symmetry_errordetectorNrecovery() {

// Loop over 3d problem space
for (plane=0; plane<edgeNodes; ++plane) {

for (row=0; row<edgeNodes; ++row) {
for (col=0; col<edgeNodes; ++col) {

//Compare the current position vec.
//with three symmetric counterparts

if(asymmetry is found) {
//Update the current position vector
//with average symmetric partners
}

}
}

}
}

void symmetry_errordetectorNrecovery() {

// Loop over 3d problem space
for (plane=0; plane<edgeNodes; ++plane) {

for (row=0; row<edgeNodes; ++row) {
for (col=0; col<edgeNodes; ++col) {

//Compare the current position vec.
//with three symmetric counterparts

if(asymmetry is found) {
//Update the current position vector
//with average symmetric partners
}

}
}

}
}

Error Detection Based on Known
Ranges (SSCA#2)
• Graph analytics application

– Computes betweenness centrality metrics
– Primary data structure is a table of vertices, each

with a weight and set of edges, read-only after generated

• Error detector checks that edges connect to valid vertices
– Would not detect an erroneous entry that pointed to a valid vertex
– Does not correct errors

• Possible “knobs”
– Frequency of verification
– Density of sampling

2014-05-23 Chapel Implementers and Users Workshop9

proc checkEdges(){

return || reduce [s in vertices]
(|| reduce [n in Neighbors(s)]

(n > 2**SCALE || n < 0));
}

Using Checksums to Detect Errors
(SSCA#3)
• Synthetic aperture radar processing application

– Two stages process SAR data into images
– Two stages compare images for target detection

• Error detector computes a checksum on a
large “state” data structure which is read-mostly
– Detection only
– Correction would require redundant storage of state

• Possible “knobs”
– Frequency of verification
– Strength of checksum

2014-05-23 Chapel Implementers and Users Workshop10

if(!crc_cmp((crc_t *)state, sizeof(state_t),state_crc_chksum))
{
fprintf(stderr,"\nPossible bit flip in 'state' struct\n");
exit(1);

}

if(!crc_cmp((crc_t *)state, sizeof(state_t),state_crc_chksum))
{
fprintf(stderr,"\nPossible bit flip in 'state' struct\n");
exit(1);

}

Cross−range

R
an

ge

Spotlight SAR Returns

20 40 60 80 100 120 140 160

50

100

150

200

250

300

350

400

0

2

4

6

8

10

12

14

16

Cross-Range

R
an

ge

Spotlight SAR Returns

Blockwise Checksum with Rollback
(SSCA#1)

• Bioinformatics optimal pattern
matching application
– Pairwise local alignment of

sequences (Smith-Waterman)

• Error detector checksums large
sequence data structures in
blocks
– Checksums can be verified as

sequence is processed

• Possible “knobs”
– Block size
– Frequency of verification
– Strength of checksum

2014-05-23 Chapel Implementers and Users Workshop11

●●●

Checksums

Sequence Data

TMR with Packed Data (SSCA#1)

• A key integer value is
known to have a limited
range (21 bits)

• Pack three copies into one
64-bit integer
– Triply redundant storage

Vp = uint21_rel_unpack(V(j));
V(j) = uint21_rel_pack(max(0, E, F(j), G));

if (uint21_rel_unpack(V(j)) >= minScore &&
W>0.0 && uint21_rel_unpack(V(j))==G

&& (j==m || i==n ||
weights(mainSeq(i+1), matchSeq(j+1))<=0.0))
{ // core computation

considerAdding(V, goodEnds, goodScores,
minScore, report, minSeparation, I,
j, sortReports, maxReports);

}

E = max(E - gapExtend,
uint21_rel_unpack(V(j)) - gapFirst);

2014-05-23 Chapel Implementers and Users Workshop12

OO Methodology for Error Detectors in
Chapel

• Construct classes to provide
variable levels of protection to
data and methods that provide
different levels of
protection/detection in
processing

• Provide “quality of protection”
weights for different approaches

• Provide methods to raise, lower,
and reset (to highest or lowest)
protection

2014-05-23 Chapel Implementers and Users Workshop13

class array_cnt_csum : array {
type t; var len: int; var data: [1..len] t; // arguments
var hash : int; // internal protection
proc plevel() { return (2); } // protection level
proc calculate() : int { return ((+ reduce data) : int); }
proc commit() { hash = calculate(); }
proc check() { assert(hash == calculate()); }
proc get(i) : t { return (data(i)); }
proc set(i,v) { data(i) = v; }
proc pup() : array { // switch to next protection level

var r = new array_tmr(t, len);
for i in {1..r.len} { r.data(i,1..3) = (get(i), get(i) ,get(i)); }
return (r);

}
proc pdown() : array { // switch to next protection level

var r = new array_bare(t, len);
r.data = data;
return (r);

}
… // pre- and post- checks

OO Methodology (continued)

2014-05-23 Chapel Implementers and Users Workshop14

class dot_functor_dmr : dot_functor {
var d1, d2;
proc plevel() { return (2); }
proc run() : int { // Execute twice and compare

const r1 = d1.run();
const r2 = d2.run();
assert(r1 == r2);
return (r1);

}
proc pdown() : dot_functor { // next protection level

return (new dot_functor_default(d1.n, d1.x, d1.y));
}

}

// create two protected arrays, level 1:
var p1 : array = new array_bare(int, 3, v1);
var p2 : array = new array_bare(int, 3, v2);
var d : dot_functor = nil; var r : int = 0;
d = new dot_functor_default(3, p1, p2);
r = d.run();
// increase level of p1: 1 -> 2
pup(p1);
d = new dot_functor_default(3, p1, p2);
r = d.run();
// reset p1 & p2's levels
pmin(p1);
pmin(p2);
// increase the functor's level
pup(d);
r = d.run();

Fault Injection Studies

• Initially: exploratory, to help identify vulnerable code/data
• Then: characterize efficacy of detector as function of “knob”

settings
– Measure energy, performance costs

2014-05-23 Chapel Implementers and Users Workshop15

Vulnerabilities to Fault Injection
(LULESH)

2014-05-23 Chapel Implementers and Users Workshop16

0

10

20

30

40

50

60

70

x xd xd
d y yd yd
d z zd zd
d fx fy fz

no
da

lM
as

s e p q ql qq v
vd

elv vd
ov

ar
ea

lg ss dx
x

dy
y

dz
z

de
lv_

xi
de

lv_
eta

de
lv_

ze
ta

de
lx_

xi
de

lx_
eta

de
lx_

ze
ta

vn
ew lxi
m lxi
p

Er
ro

r (
%

)

1-bit Fault Injection Results

1bF-NOREXIT

1bF-ABEXIT

Major program variables

Completes with correct results
Completes with incorrect results
Execution aborts

Efficacy of Symmetry-Based Error
Detector/Corrector (LULESH)

2014-05-23 Chapel Implementers and Users Workshop17

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fa
ul

t T
yp

es
 (%

)

Variables (User Data)

Fault Behaviors of LULESH (1-bit Fault)
(Relative Error TH = 1.0E-13, 6-decimal-place outputs)

N(ND)
N(D-NR)
N(D-R)
E(D-NR)
E(ND)

Black blocks indicate
erroneous results in which the
error detector did not trigger

Combining Error Detection with
Checkpoint/Restart (LULESH)

2014-05-23 Chapel Implementers and Users Workshop18

0

10

20

30

40

50

60

x xd xd
d y yd yd
d z zd zd
d fx fy fz

no
da

lM
as

s e p q ql qq v
vd

elv vd
ov

ar
ea

lg ss dx
x

dy
y

dz
z

de
lv_

xi
de

lv_
eta

de
lv_

ze
ta

de
lx_

xi
de

lx_
eta

de
lx_

ze
ta

vn
ew lxi
m lxi
p

Er
ro

r (
%

)

Variabnles (User Data)

Fault Baviours of LULESH (1-bit Faults)
(Relative Error TH = 1.0E-13, 6-decimal-place outputs)

ABFT(D)
CKPT+ABFT(D+R)
CKPT
ABFT(D+R)
CKPT+ABFT(D)

Pure checkpointing solution
doesn’t protect against SDC

Combining algorithm-based
detection with checkpoint-based
recovery is quite effective

Magnitudes of Errors Observed
(SSCA#2)

• Inject faults into edge lists only
• Inject only between computational kernels

– In these examples, after kernel 3

• Look at results for betweenness centrality
metric (Kernel 4)
– Two approximate metrics (16, 32 starting

vertices), exact metric
– Variation due to errors significant larger in 16

metric than in 32 or exact

2014-05-23 Chapel Implementers and Users Workshop19

0

50

100

150

200

0 0.02 0.04 0.06 0.08 0.1

exct_btn_16 min_btn_16 max_btn_16

0
50

100
150
200
250
300

0 0.02 0.04 0.06 0.08 0.1

exct_btn_32 min_btn_32 max_btn_32

0
100
200
300
400
500
600

0 0.02 0.04 0.06 0.08 0.1

exct_btn_exct min_btn_exct max_btn_exct0.01 0.02 0.03 0.04 0.05 0.1
0

20

40

60

80

Edge bit flip probability

Kernel 3 failures
Kernel 4 failures

Rate of fatal errors

16

32

Exact

Comparing Different Checksums
(SSCA#3)

• CRC and Fletcher checksums
of data structure
– Markedly different efficacies
– CRC-32 catches all errors for

these cases
– Cost of all CRC variants is the

same (< 6% variation)
– Fletcher-16 more expensive than

Fletcher-32

2014-05-23 Chapel Implementers and Users Workshop20

Errors Missed (up to 4096 b messages)

Performance (up to 256 kb messages)

Runtime Adaptation in R-E-P Trade Space

• Module in runtime to control “knobs” in error detectors
– Informed by models of R-E-P behavior of detector

• Static settings (life of job) and dynamic control possible
Some approaches for dynamic control…
• Profile-based

– Select error detectors based on execution phases in application profile
• Performance/energy-driven

– Select best error detectors while staying within given E-P limits
• Symptom-based

– Vary R depending on fault notifications
• Prediction-based

– Choose R based on observed symptoms
– Find best E-P point for chosen R

2014-05-23 Chapel Implementers and Users Workshop21

Extending Chapel to Support
Programmer-Guided Reliability
• Initially

– Programmer-provided code for error detection
• May be intertwined with computational code
• Can use OO techniques to “wrap up” a data structure with error detection

– Need to be able to associate error detector control variable or
reconfiguration routine with cost model

• Eventually
– Identify reliability “patterns” that are common, reusable
– Implement within module, or generate in compiler
– Guide via annotations on target code

• Question
– Try to cast as “regular code” or as directives/pragmas?

2014-05-23 Chapel Implementers and Users Workshop22

Possibilities for Registration of
Detectors

2014-05-23 Chapel Implementers and Users Workshop23

pgr.register(detector_name, reconfig, cost);
error detector // using R as parameter to define

// level of protection

As normal code?

pragma pgr.register(detector_name, reconfig, cost);
error detector // using R as parameter to define

// level of protection

As a pragma?

//$pgr register(detector_name, reconfig, cost);
error detector // using R as parameter to define

// level of protection

As a structured comment?

Possible “Automatic” Instantiations of
Common Error Detection Patterns

2014-05-23 Chapel Implementers and Users Workshop24

const: D: domain(2) = [1..10, 1..10];
var A: [D] real protect(checksum);

Array declaration with “protect” attribute

begin(tmr) result = important(stuff);

Task executed with triple redundancy

iter squares(n: int): int monotonic {
for i in 1..n do
yield i*i;

}

Iterator declaration with “monotonic” contract

var limited = float(-1.0, 1.0)

Declare variable with limited range of validity

Summary
• Trends suggest that errors are going to get worse

– Silent data corruption is particularly worrisome

• Applications will need to play an active role in detecting (and
correcting) errors

• Programmers know much about what could go wrong and the impact
it could have

• Give programmers tools to capture that information in the code
– Automate common error detection patterns

• Give runtime capability to manage programmer-provided error
detection
– Need to connect detectors to back-end

2014-05-23 Chapel Implementers and Users Workshop25

This work has been supported by the DoD Advanced Computing Initiative and
performed at Oak Ridge National Laboratory, which is managed by UT-Battelle,
LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

