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Overall Goal 

•  Improve the runtime of certain types of parallel computers 
–  In particular, message passing computers 
 

•  Approach 
–  Start with an explicitly parallel program  
–  Compile using our method to minimize communication cost between 

nodes of the parallel computer 

•  Advantage: Faster scientific and data processing computation 
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Message Passing 
Architectures  

•  Communicate data among a set of processors with separate 
address spaces using messages 
–  Remote Direct Memory Access (RDMA) 

•  High Performance Computing Systems 
•  100-100,000 compute nodes 
•  Complicates compilation 
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PGAS Languages  

•  Partitioned Global Address Space (PGAS) 
•  Provides illusion of a shared memory system 

on top of a distributed memory system 
•  Allows the programmer to reason about 

locality without dealing with low-level data 
movement 

•  Example - CHAPEL 
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CHAPEL 

•  PGAS language developed by Cray Inc. 
•  Programmers express parallelism explicitly 
•  Features to improve programmer productivity 
•  Targets large scale and desktop systems  
•  Opportunities for performance optimizations! 
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Our Work’s 
Contribution 

We present an optimization for parallel loops 
with affine array accesses in CHAPEL.  
 
The optimization uses a technique known as 
modulo unrolling to aggregate messages and 
improve the runtime performance of loops for 
distributed memory systems using message 
passing.  
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•  Introduction and Motivation 
•  Modulo Unrolling  
•  Optimized Cyclic and Block Cyclic Dists 
•  Results 

Outline 
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Affine Array Accesses 
•  Most common type of array access in 

scientific codes 
–  A[i],  A[j],  A[3],  A[i+1],  A[i + j],  A[2i + 3j] 
–  A[i, j],  A[3i, 5j] 

•  Array accesses are affine if the access on 
each dimension is a linear expression of the 
loop indices  
–  E.g. A[ai + bj + c] for a 2D loop nest 
– Where a, b, and c are constant integers 



9 

Example Parallel Loop 
in CHAPEL 
 
forall i in 1..10 do 

 A[i] = B[i+2];  
  

B: 

A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

What happens when the data is 
distributed? 
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Data Distributions in 
CHAPEL 
•  Describe how data is allocated across 

locales for a given program 
–  A locale is a unit of a distributed computer (processor 

and memory) 

•  Users can distribute data with CHAPEL’s 
standard modules or create their own 
distributions  

•  Distributions considered in this study 
–  Cyclic 
–  Block  
–  Block Cyclic 



11 

Data Distributions in 
CHAPEL - Block 
use BlockDist; 
 
var domain = {1..15};  
var distribution = domain dmapped Block(boundingBox=domain); 
var A: [distribution] int; 
// A is now distributed in the following fashion 
 

A: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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Data Distributions in 
CHAPEL - Cyclic 
use CyclicDist; 
 
var domain = {1..15};  
var distribution = domain dmapped Cyclic(startIdx=domain.low); 
var A: [distribution] int; 
// A is now distributed in the following fashion 
 

A: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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Data Distributions in 
CHAPEL – Block Cyclic 
use BlockCycDist; 
 
var domain = {1..15};  
var distribution = dom dmapped BlockCyclic(blocksize=3); 
var A: [distribution] int; 
// A is now distributed in the following fashion 
 

A: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

*similar code is used to distributed multi-dimensional 
arrays 
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Distributed Parallel 
Loop in CHAPEL 
 
forall i in 1..10 do 

 A[i] = B[i+2];  
  

•  4 Messages 
•  Locale 1 à Locale 0 containing B[6] 
•  Locale 1 à Locale 0 containing B[7] 
•  Locale 2 à Locale 1 containing B[11] 
•  Locale 2 à Locale 1 containing B[12] 

B: 

A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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Data Communication in 
CHAPEL can be Improved 
•  Locality check at each loop iteration 

–  Is B[i+2] local or remote? 
•  Each message contains only 1 element 
•  We could have aggregated messages 

– Using GASNET strided get/put in CHAPEL 
–  Locale 1 à Locale 0 containing B[6], B[7] 
–  Locale 2 à Locale 1 containing B[11], B[12] 

•  Growing problem 
– Runtime increases for larger problems and 

more complex data distributions 
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How to improve this? 
•  Use knowledge about how data is distributed 

and loop access patterns to aggregate 
messages and reduce runtime of affine 
parallel loops 

•  We are not trying to 
–  Apply automatic parallelization to CHAPEL 
– Come up with a new data distribution 
–  Bias or override the programmer to a particular 

distribution 
•  We are trying to  

–  Improve CHAPEL’s existing data distributions to 
perform better than their current implementation 
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•  Method to statically disambiguate array 
accesses at compile time 

•  Unroll the loop by factor = number of locales 
•  Each array access will reside on a single 

locale across loop iterations  
•  Applicable for Cyclic and Block Cyclic 

  Modulo Unrolling – See Barua1999 
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for i in 1..99 { 
   A[i] = A[i] + B[i+1];   
} 

Modulo Unrolling Example 

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Each iteration of the loop 
accesses data on a 
different locale 
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for i in 1..99 by 4 { 
   A[i] = A[i] + B[i+1];   
   A[i+1] = A[i+1] + B[i+2]; 
   A[i+2] = A[i+2] + B[i+3]; 
   A[i+3] = A[i+3] + B[i+4]; 
} 

Modulo Unrolling Example 

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Loop unrolled by a factor of 4 
automatically by the compiler 
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for i in 1..99 by 4 { 
   A[i] = A[i] + B[i+1];   
   A[i+1] = A[i+1] + B[i+2]; 
   A[i+2] = A[i+2] + B[i+3]; 
   A[i+3] = A[i+3] + B[i+4]; 
} 

Modulo Unrolling Example 

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Locale 0 Locale 1 Locale 2 Locale 3 

A[1], A[5], 
A[9], … 

B[1], B[5], 
B[9], … 

B[2], B[6], 
B[10], … 

B[3], B[7], 
B[11], … 

B[4], B[8], 
B[12], … 

A[2], A[6], 
A[10], … 

A[3], A[7], 
A[11], … 

A[4], A[8], 
A[12], … 

How do we apply this concept in 
Chapel? 
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CHAPEL Zippered 
Iteration 
•  Can be used with parallel for loops 
•  Leader iterator 

– Creates tasks to implement parallelism and 
assigns iterations to tasks 

•  Follower iterator 
– Carries out work specified by leader (yielding 

elements) usually serially 
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CHAPEL Zippered 
Iteration 

 
 

forall (a, b, c) in zip(A, B, C) {  
   code… 
} 
 Because it is first, A’s leader iterator 

will divide up the work among available tasks 

Follower iterators of A, B, and C will be 
responsible for doing work for each task 

*See Chamberlain2011 
for more detail on leader/
follower semantics 
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CHAPEL Zippered 
Iteration 

 
 
•  It turns out any parallel forall loop with affine 

array accesses can be written using zippered 
iteration over array slices 

 
 

forall i in 1..10 { 
   A[i] = B[i+2]; 
} 

 

forall (a,b) in zip(A[1..10], B[3..12]){ 
   a = b; 
} Zippered iteration 

Implement modulo unrolling and message aggregation within 
the leader and follower iterators of the Block Cyclic and Cyclic 
distributions! 
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CHAPEL Cyclic 
Distribution  
forall (a,b) in zip(A[1..10], B[3..12]) do 
   a = b;  

  

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Locale 0 
•  Leader iterator allocates locale 0 with 

iterations 1, 5, 9, … 
•  Follower iterator of B recognizes that its work 

3, 7, 11, … is remote on locale 2 
•  Elements of B’s chunk of work brought to 

locale 0 via 1 bulk get message to a local 
buffer 

•  Elements of local buffer are now yielded back 
to loop header 

*if yielded elements are 
written to during the loop, a 
similar bulk put message is 
required to update remote 
portions of array 
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CHAPEL Block Cyclic 
Distribution  
forall (a,b) in zip(A[1..10], B[3..12]) do 
   a = b;  

  

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Locale 0 
•  Aggregation now occurs with elements in the 

same location within each block 
•  Both leader and follower needed to be 

modified 
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•  Introduction and Motivation 
•  Modulo Unrolling  
•  Optimized Cyclic and Block Cyclic Dists 
•  Results 

Outline 
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Benchmarks  
Name Dimension Description Input (elements) 

2mm 2D Matrix mulitplication 16 x 16 

cholesky 2D Cholesky decomposition 128 x 128 

jacobi-2d 2D Jacobi relaxation 400 x 400 

jacobi-1d 1D Jacobi relaxation 10000 

stencil9 2D 9-point stencil calculation 400 x 400 

folding 1D Sum consecutive elements of array 
using strided access pattern 

N = 50400, 10 iterations 

pascal 1D Computes rows of pascal’s triangle N1 = 10000, N2 = 10003 

covariance 2D Covariance calculation 128 x 128 

correlation 2D Correlation 64 x 64 

* Data collected on 10 node Golgatha cluster at LTS 
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Cyclic vs. Cyclic Modulo 
Normalized Runtime 
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Cyclic vs. Cyclic Modulo 
Normalized Message 
Counts 
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Block Cyclic vs. Block 
Cyclic Modulo 
Normalized Runtime 
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Block Cyclic vs. Block 
Cyclic Modulo Normalized 
Message Count 
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On average 72% 
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•  We’ve presented optimized Cyclic and Block Cyclic 
distributions in CHAPEL that perform modulo 
unrolling 

•  Our results for Cyclic Modulo and Block Cyclic 
Modulo show improvements in runtime and message 
counts for affine programs over existing distributions 

Conclusion   
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Questions?   
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Backup Slides 
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CHAPEL Zippered 
Iteration 
•  Iterators  

– Chapel construct similar to a function  
–  return or “yield” multiple values to the callsite 
– Can be used in loops 

 iter fib(n: int) { 
   var current = 0,  
   next = 1;  
   for i in 1..n {  
      yield current;  
      current += next;  
      current <=> next;  
   } 
} 

 

for f in fib(5) {  
   writeln(f); 
} 

 
f is the next yielded 
value of fib after each 
iteration 

Being used in a loop 

Output: 0, 1, 1, 2, 3 
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CHAPEL Zippered 
Iteration 
•  Zippered Iteration 

– Multiple iterators of the same size are traversed 
simultaneously  

– Corresponding iterations processed together 
 

for (i, f) in zip(1..5, fib(5)) {  
   writeln(“Fibonacci ”, i, “ = ”, f); 
} 

 

Output 
 
Fibonacci 1 = 0 
Fibonacci 2 = 1 
Fibonacci 3 = 1 
Fibonacci 4 = 2 
Fibonacci 5 = 3 
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2D Jacobi Example – Transformed Pseudocode 
 
 

What about Block?   

forall (k1,k2) in {0..1, 0..1} { 
   if A[2 + 3k1, 2 + 3k2].locale.id == $ then on $ { 
      buf_north = get(A[2+3k1..4+3k1, 2+3k2-1..4+3k2-1]); 
      buf_south = get(A[2+3k1..4+3k1, 2+3k2+1..4+3k2+1]); 
      buf_east = get(A[2+3k1-1..4+3k1-1, 2+3k2..4+3k2]); 
      buf_west = get(A[2+3k1+1..4+3k1+1, 2+3k2..4+3k2]); 
 
      LB_i = 2+3k1; 
      LB_j = 2+3k2; 
 
      forall(i, j) in {2+3k1..4+3k1, 2+3k2..4+3k2} { 
         Anew[i,j] = (buf_north[i-LB_i, j-LB_j] + buf_south[i-LB_i, j-LB_j] +  
                         buf_east[i-LB_i, j-LB_j] + buf_west[i-LB_i, j-LB_j])/4.0; 
      } 
} 

For each block in 
parallel 

Bring in remote 
portions of array 
footprint locally  

Do the 
computation using 
local buffers 
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•  It seems that data distributed using Block naturally 
results in fewer messages for many benchmarks 

•  Makes sense because many benchmarks in 
scientific computing access nearest neighbor 
elements 

•  Nearest neighbor elements are more likely to reside 
on the same locale 

•  Could we still do better and aggregate messages? 

What about Block?   
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2D Jacobi Example 
 
 

What about Block?   

        

        

        

        

        

        

        

        

 

Locale 3 

forall (i,j) in {2..7, 2..7} { 
   Anew[i,j] = (A[i+1, j] + A[i-1, j] + A[i, j+1] + A[i, j-1])/4.0; 
} 

        

        

        

        

        

        

        

        

 
A[i, j] A[i-1, j] A[i+1, j] 

A[i, j-1] 

A[i, j+1] 

i 

j 

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

        

        

        

        

        

        

        

        

 

        

        

        

        

        

        

        

        

 

•  2 remote blocks per locale à 2 messages 
•  8 messages with aggregation 
•  24 messages without 
•  Messages without aggregation grows as 

problem size grows 
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LTS Golgatha Cluster 
Hardware Specs 
•  10 hardware nodes  
•  Infiniband communication layer between 

nodes 
•  2 sockets per node 
•  Intel Xeon X5760 per socket 

–  2.93GHz 
–  6 cores (12 hardware threads w/ 2 way 

hyperthreading) 
–  24GB RAM per processor  
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Data Transfer Round Trip 
Time for Infiniband 
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Bandwidth measurements 
for Infiniband 
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•  Loop fission, fusion, interchange, peeling, 
etc. 

•  Software pipelining, scheduling, etc. 
•  Pros 

+ discovering parallelism 
+ increasing the granularity of parallelism 
+ improving cache performance 

Traditional Method – See Ramanujam1991 
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•  Cons 
-  Code generation for message passing is 

complex and limiting 
-  Needs 

-  Footprint calculations which can be modeled with matrix 
calculations 

-  Intersections of footprint with data distributions à result in 
irregular shaped which cannot be modeled with matrix 
transformations 

-  Splitting footprints into portions per locale also complex and can’t 
be modeled with matrix transformations  

-  Real compilers limit aggregation to the simplest 
of stencil codes 

 

Traditional Method – See Ramanujam1991 
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•  Boundaries traced for each array use of a 
loop and intersected with the data distribution 

•  Applied to block distributions 
•  Pros 

+ Has mathematical framework to express parallelism 
and find sequences of transformations in one step 
+ Good at automatic parallelization and improves 
parallelism, granularity of parallelism, and cache locality  

•  Cons 
-  Core polyhedral method does not compute information 

for message passing code generation 
-  Uses ad hoc add-ons for message passing   
 

 

Polyhedral Method – See Benabderrahmane2010 
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•  Redundancy elimination, split-phase 
communication, communication coalescing 

•  Pros 
+ eliminates the need for cross thread analysis 
+ targets fine-grained communication in UPC 
compiler 

•  Cons 
-  No locality analysis that statically determines 

whether an access is shared or remote  
 

PGAS Methods – See Chen2005 
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•  Our method does not help the Block 
distribution 
– Reason: Needs cyclic pattern 
 

•  For Block, we use the traditional method 

What about Block? 


