
Affine Loop Optimization using
Modulo Unrolling in CHAPEL

Aroon Sharma, Joshua Koehler, Rajeev Barua

LTS POC: Michael Ferguson

2

Overall Goal

•  Improve the runtime of certain types of parallel computers
–  In particular, message passing computers

•  Approach
–  Start with an explicitly parallel program
–  Compile using our method to minimize communication cost between

nodes of the parallel computer

•  Advantage: Faster scientific and data processing computation

3

Message Passing
Architectures

•  Communicate data among a set of processors with separate
address spaces using messages
–  Remote Direct Memory Access (RDMA)

•  High Performance Computing Systems
•  100-100,000 compute nodes
•  Complicates compilation

4

PGAS Languages

•  Partitioned Global Address Space (PGAS)
•  Provides illusion of a shared memory system

on top of a distributed memory system
•  Allows the programmer to reason about

locality without dealing with low-level data
movement

•  Example - CHAPEL

5

CHAPEL

•  PGAS language developed by Cray Inc.
•  Programmers express parallelism explicitly
•  Features to improve programmer productivity
•  Targets large scale and desktop systems
•  Opportunities for performance optimizations!

6

Our Work’s
Contribution

We present an optimization for parallel loops
with affine array accesses in CHAPEL.

The optimization uses a technique known as
modulo unrolling to aggregate messages and
improve the runtime performance of loops for
distributed memory systems using message
passing.

7

•  Introduction and Motivation
•  Modulo Unrolling
•  Optimized Cyclic and Block Cyclic Dists
•  Results

Outline

8

Affine Array Accesses
•  Most common type of array access in

scientific codes
–  A[i], A[j], A[3], A[i+1], A[i + j], A[2i + 3j]
–  A[i, j], A[3i, 5j]

•  Array accesses are affine if the access on
each dimension is a linear expression of the
loop indices
–  E.g. A[ai + bj + c] for a 2D loop nest
– Where a, b, and c are constant integers

9

Example Parallel Loop
in CHAPEL

forall i in 1..10 do

 A[i] = B[i+2];

B:

A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

What happens when the data is
distributed?

10

Data Distributions in
CHAPEL
•  Describe how data is allocated across

locales for a given program
–  A locale is a unit of a distributed computer (processor

and memory)

•  Users can distribute data with CHAPEL’s
standard modules or create their own
distributions

•  Distributions considered in this study
–  Cyclic
–  Block
–  Block Cyclic

11

Data Distributions in
CHAPEL - Block
use BlockDist;

var domain = {1..15};
var distribution = domain dmapped Block(boundingBox=domain);
var A: [distribution] int;
// A is now distributed in the following fashion

A:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12

Data Distributions in
CHAPEL - Cyclic
use CyclicDist;

var domain = {1..15};
var distribution = domain dmapped Cyclic(startIdx=domain.low);
var A: [distribution] int;
// A is now distributed in the following fashion

A:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13

Data Distributions in
CHAPEL – Block Cyclic
use BlockCycDist;

var domain = {1..15};
var distribution = dom dmapped BlockCyclic(blocksize=3);
var A: [distribution] int;
// A is now distributed in the following fashion

A:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

*similar code is used to distributed multi-dimensional
arrays

14

Distributed Parallel
Loop in CHAPEL

forall i in 1..10 do

 A[i] = B[i+2];

•  4 Messages
•  Locale 1 à Locale 0 containing B[6]
•  Locale 1 à Locale 0 containing B[7]
•  Locale 2 à Locale 1 containing B[11]
•  Locale 2 à Locale 1 containing B[12]

B:

A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

Data Communication in
CHAPEL can be Improved
•  Locality check at each loop iteration

–  Is B[i+2] local or remote?
•  Each message contains only 1 element
•  We could have aggregated messages

– Using GASNET strided get/put in CHAPEL
–  Locale 1 à Locale 0 containing B[6], B[7]
–  Locale 2 à Locale 1 containing B[11], B[12]

•  Growing problem
– Runtime increases for larger problems and

more complex data distributions

16

How to improve this?
•  Use knowledge about how data is distributed

and loop access patterns to aggregate
messages and reduce runtime of affine
parallel loops

•  We are not trying to
–  Apply automatic parallelization to CHAPEL
– Come up with a new data distribution
–  Bias or override the programmer to a particular

distribution
•  We are trying to

–  Improve CHAPEL’s existing data distributions to
perform better than their current implementation

17

•  Method to statically disambiguate array
accesses at compile time

•  Unroll the loop by factor = number of locales
•  Each array access will reside on a single

locale across loop iterations
•  Applicable for Cyclic and Block Cyclic

 Modulo Unrolling – See Barua1999

18

for i in 1..99 {
 A[i] = A[i] + B[i+1];
}

Modulo Unrolling Example

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Each iteration of the loop
accesses data on a
different locale

19

for i in 1..99 by 4 {
 A[i] = A[i] + B[i+1];
 A[i+1] = A[i+1] + B[i+2];
 A[i+2] = A[i+2] + B[i+3];
 A[i+3] = A[i+3] + B[i+4];
}

Modulo Unrolling Example

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Loop unrolled by a factor of 4
automatically by the compiler

20

for i in 1..99 by 4 {
 A[i] = A[i] + B[i+1];
 A[i+1] = A[i+1] + B[i+2];
 A[i+2] = A[i+2] + B[i+3];
 A[i+3] = A[i+3] + B[i+4];
}

Modulo Unrolling Example

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Locale 0 Locale 1 Locale 2 Locale 3

A[1], A[5],
A[9], …

B[1], B[5],
B[9], …

B[2], B[6],
B[10], …

B[3], B[7],
B[11], …

B[4], B[8],
B[12], …

A[2], A[6],
A[10], …

A[3], A[7],
A[11], …

A[4], A[8],
A[12], …

How do we apply this concept in
Chapel?

21

CHAPEL Zippered
Iteration
•  Can be used with parallel for loops
•  Leader iterator

– Creates tasks to implement parallelism and
assigns iterations to tasks

•  Follower iterator
– Carries out work specified by leader (yielding

elements) usually serially

22

CHAPEL Zippered
Iteration

forall (a, b, c) in zip(A, B, C) {
 code…
}
 Because it is first, A’s leader iterator

will divide up the work among available tasks

Follower iterators of A, B, and C will be
responsible for doing work for each task

*See Chamberlain2011
for more detail on leader/
follower semantics

23

CHAPEL Zippered
Iteration

•  It turns out any parallel forall loop with affine

array accesses can be written using zippered
iteration over array slices

forall i in 1..10 {
 A[i] = B[i+2];
}

forall (a,b) in zip(A[1..10], B[3..12]){
 a = b;
} Zippered iteration

Implement modulo unrolling and message aggregation within
the leader and follower iterators of the Block Cyclic and Cyclic
distributions!

24 Modulo Unrolling in
CHAPEL Cyclic
Distribution
forall (a,b) in zip(A[1..10], B[3..12]) do
 a = b;

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Locale 0
•  Leader iterator allocates locale 0 with

iterations 1, 5, 9, …
•  Follower iterator of B recognizes that its work

3, 7, 11, … is remote on locale 2
•  Elements of B’s chunk of work brought to

locale 0 via 1 bulk get message to a local
buffer

•  Elements of local buffer are now yielded back
to loop header

*if yielded elements are
written to during the loop, a
similar bulk put message is
required to update remote
portions of array

25 Modulo Unrolling in
CHAPEL Block Cyclic
Distribution
forall (a,b) in zip(A[1..10], B[3..12]) do
 a = b;

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Locale 0
•  Aggregation now occurs with elements in the

same location within each block
•  Both leader and follower needed to be

modified

26

•  Introduction and Motivation
•  Modulo Unrolling
•  Optimized Cyclic and Block Cyclic Dists
•  Results

Outline

27

Benchmarks
Name Dimension Description Input (elements)

2mm 2D Matrix mulitplication 16 x 16

cholesky 2D Cholesky decomposition 128 x 128

jacobi-2d 2D Jacobi relaxation 400 x 400

jacobi-1d 1D Jacobi relaxation 10000

stencil9 2D 9-point stencil calculation 400 x 400

folding 1D Sum consecutive elements of array
using strided access pattern

N = 50400, 10 iterations

pascal 1D Computes rows of pascal’s triangle N1 = 10000, N2 = 10003

covariance 2D Covariance calculation 128 x 128

correlation 2D Correlation 64 x 64

* Data collected on 10 node Golgatha cluster at LTS

28

Cyclic vs. Cyclic Modulo
Normalized Runtime

0

0.2

0.4

0.6

0.8

1

1.2

R
un

tim
e

N
or

m
al

iz
ed

 to
 C

yc
lic

Cyclic
Cyclic Modulo

On average 30%
decrease in
runtime

29

Cyclic vs. Cyclic Modulo
Normalized Message
Counts

0

0.2

0.4

0.6

0.8

1

1.2

M
es

sa
ge

 C
ou

nt
 N

or
m

al
iz

ed
 to

 C
yc

lic

Cyclic
Cyclic Modulo

On average, 68%
fewer messages

30

Block Cyclic vs. Block
Cyclic Modulo
Normalized Runtime

0

0.2

0.4

0.6

0.8

1

1.2

pascal jacobi-1D geometric mean

R
un

tim
e

N
or

m
al

iz
ed

 to
 B

lo
ck

C

yc
lic

Block Cyclic
Block Cyclic Modulo

On average 52%
decrease in
runtime

31

Block Cyclic vs. Block
Cyclic Modulo Normalized
Message Count

0

0.2

0.4

0.6

0.8

1

1.2

pascal jacobi-1D geometric mean

M
es

sa
ge

 C
ou

nt
 N

or
m

al
iz

ed
 to

B

lo
ck

 C
yc

lic

Block Cyclic
Block Cyclic Modulo

On average 72%
fewer messages

32

•  We’ve presented optimized Cyclic and Block Cyclic
distributions in CHAPEL that perform modulo
unrolling

•  Our results for Cyclic Modulo and Block Cyclic
Modulo show improvements in runtime and message
counts for affine programs over existing distributions

Conclusion

33

[1] Barua, R., & Lee, W. (1999). Maps: A Compiler-
Managed Memory System for Raw Machine.
Proceedings of the 26th International Symposium on
Computer Architecture, (pp. 4-15).
[2] User-Defined Parallel Zippered Iterators in Chapel,
Chamberlain, Choi, Deitz, Navarro; October 2011
[3] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen,
and C. Bastoul. The polyhedral model is more widely
applicable than you think. In ETAPS International
Conference on Compiler Construction (CC’2010),
pages 283–303, Mar. 2010.

References

34

[4] Compile-time techniques for data distribution in
distributed memory machines. J Ramanujam, P
Sadayappan - Parallel and Distributed Systems, IEEE
Transactions on, 1991
[5] Chen, Wei-Yu, Costin Iancu, and Katherine Yelick.
"Communication optimizations for fine-grained UPC
applications." Parallel Architectures and Compilation
Techniques, 2005. PACT 2005. 14th International
Conference on. IEEE, 2005.

References

35

Questions?

36

Backup Slides

37

CHAPEL Zippered
Iteration
•  Iterators

– Chapel construct similar to a function
–  return or “yield” multiple values to the callsite
– Can be used in loops

 iter fib(n: int) {
 var current = 0,
 next = 1;
 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for f in fib(5) {
 writeln(f);
}

f is the next yielded
value of fib after each
iteration

Being used in a loop

Output: 0, 1, 1, 2, 3

38

CHAPEL Zippered
Iteration
•  Zippered Iteration

– Multiple iterators of the same size are traversed
simultaneously

– Corresponding iterations processed together

for (i, f) in zip(1..5, fib(5)) {
 writeln(“Fibonacci ”, i, “ = ”, f);
}

Output

Fibonacci 1 = 0
Fibonacci 2 = 1
Fibonacci 3 = 1
Fibonacci 4 = 2
Fibonacci 5 = 3

39

2D Jacobi Example – Transformed Pseudocode

What about Block?

forall (k1,k2) in {0..1, 0..1} {
 if A[2 + 3k1, 2 + 3k2].locale.id == $ then on $ {
 buf_north = get(A[2+3k1..4+3k1, 2+3k2-1..4+3k2-1]);
 buf_south = get(A[2+3k1..4+3k1, 2+3k2+1..4+3k2+1]);
 buf_east = get(A[2+3k1-1..4+3k1-1, 2+3k2..4+3k2]);
 buf_west = get(A[2+3k1+1..4+3k1+1, 2+3k2..4+3k2]);

 LB_i = 2+3k1;
 LB_j = 2+3k2;

 forall(i, j) in {2+3k1..4+3k1, 2+3k2..4+3k2} {
 Anew[i,j] = (buf_north[i-LB_i, j-LB_j] + buf_south[i-LB_i, j-LB_j] +
 buf_east[i-LB_i, j-LB_j] + buf_west[i-LB_i, j-LB_j])/4.0;
 }
}

For each block in
parallel

Bring in remote
portions of array
footprint locally

Do the
computation using
local buffers

40

•  It seems that data distributed using Block naturally
results in fewer messages for many benchmarks

•  Makes sense because many benchmarks in
scientific computing access nearest neighbor
elements

•  Nearest neighbor elements are more likely to reside
on the same locale

•  Could we still do better and aggregate messages?

What about Block?

41

2D Jacobi Example

What about Block?

Locale 3

forall (i,j) in {2..7, 2..7} {
 Anew[i,j] = (A[i+1, j] + A[i-1, j] + A[i, j+1] + A[i, j-1])/4.0;
}

A[i, j] A[i-1, j] A[i+1, j]

A[i, j-1]

A[i, j+1]

i

j

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

•  2 remote blocks per locale à 2 messages
•  8 messages with aggregation
•  24 messages without
•  Messages without aggregation grows as

problem size grows

42

LTS Golgatha Cluster
Hardware Specs
•  10 hardware nodes
•  Infiniband communication layer between

nodes
•  2 sockets per node
•  Intel Xeon X5760 per socket

–  2.93GHz
–  6 cores (12 hardware threads w/ 2 way

hyperthreading)
–  24GB RAM per processor

43

Data Transfer Round Trip
Time for Infiniband

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200

Latency (µs)

Data size (bytes)

44

Bandwidth measurements
for Infiniband

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

Bandwidth
(MB/s)

Data size (bytes)

45

•  Loop fission, fusion, interchange, peeling,
etc.

•  Software pipelining, scheduling, etc.
•  Pros

+ discovering parallelism
+ increasing the granularity of parallelism
+ improving cache performance

Traditional Method – See Ramanujam1991

46

•  Cons
-  Code generation for message passing is

complex and limiting
-  Needs

-  Footprint calculations which can be modeled with matrix
calculations

-  Intersections of footprint with data distributions à result in
irregular shaped which cannot be modeled with matrix
transformations

-  Splitting footprints into portions per locale also complex and can’t
be modeled with matrix transformations

-  Real compilers limit aggregation to the simplest
of stencil codes

Traditional Method – See Ramanujam1991

47

•  Boundaries traced for each array use of a
loop and intersected with the data distribution

•  Applied to block distributions
•  Pros

+ Has mathematical framework to express parallelism
and find sequences of transformations in one step
+ Good at automatic parallelization and improves
parallelism, granularity of parallelism, and cache locality

•  Cons
-  Core polyhedral method does not compute information

for message passing code generation
-  Uses ad hoc add-ons for message passing

Polyhedral Method – See Benabderrahmane2010

48

•  Redundancy elimination, split-phase
communication, communication coalescing

•  Pros
+ eliminates the need for cross thread analysis
+ targets fine-grained communication in UPC
compiler

•  Cons
-  No locality analysis that statically determines

whether an access is shared or remote

PGAS Methods – See Chen2005

49

•  Our method does not help the Block
distribution
– Reason: Needs cyclic pattern

•  For Block, we use the traditional method

What about Block?

