ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

Affine Loop Optimization using
Modulo Unrolling in CHAPEL

QBRSIT},

41{3@@

Aroon Sharma, Joshua Koehler, Rajeev Barua

LTS POC: Michael Ferguson

A. JAMES CLARK SCHOOL s ENGINEERING

UNIVERSITY OF MARYLAND

Overall Goal ‘ “

* Improve the runtime of certain types of parallel computers
— In particular, message passing computers

* Approach

— Start with an explicitly parallel program

— Compile using our method to minimize communication cost between
nodes of the parallel computer

« Advantage: Faster scientific and data processing computation

m THE A. JAMES CLARK SCHOOL of ENGINEERING

3

Message Passing ‘ “

Architectures

« Communicate data among a set of processors with separate
address spaces using messages

— Remote Direct Memory Access (RDMA)
« High Performance Computing Systems
 100-100,000 compute nodes
« Complicates compilation

R M, B, M,

000

Link 1 Link 2 Link n

Interconnection Network

THE A. JAMES CLARK SCHOOL of ENGINEERING

=

PGAS Languages ‘ f‘

» Partitioned Global Address Space (PGAS)

* Provides illusion of a shared memory system
on top of a distributed memory system

* Allows the programmer to reason about
locality without dealing with low-level data
movement

« Example - CHAPEL

m THE A. JAMES CLARK SCHOOL of ENGINEERING

5

CHAPEL ‘ o‘

 PGAS language developed by Cray Inc.

* Programmers express parallelism explicitly
Features to improve programmer productivity
Targets large scale and desktop systems
Opportunities for performance optimizations!

h THE A. JAMES CLARK SCHOOL of ENGINEERING

Our Work’s
Contribution

®

We present an optimization for parallel loops
with affine array accesses in CHAPEL.

The optimization uses a technique known as
modulo unrolling to aggregate messages and
improve the runtime performance of loops for

distributed memory systems using message
passing.

_ '
-
m THE A. JAMES CLARK SCHOOL of ENGINEERING

Outline

Introduction and Motivation

* Modulo Unrolling

* Optimized Cyclic and Block Cyclic Dists
* Results

m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

Affine Array Accesses

®

* Most common type of array access in
scientific codes

— A, A, Al3], Ali+1], Ali+]], A[2i + 3]
— Al JI, Al3i, 9]

* Array accesses are affine if the access on
each dimension is a linear expression of the
loop indices
— E.g. AJai + bj + c] for a 2D loop nest
— Where a, b, and c are constant integers

m THE A. JAMES CLARK SCHOOL of ENGINEERING

Example Parallel Loop ‘ !‘
in CHAPEL

foralliin 1..10 do What happens when the data is

distributed?
All] = B[i+2];

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PSS —-—

m THE A. JAMES CLARK SCHOOL of ENGINEERING

Data Distributions In

‘
CHAPEL ®

 Describe how data is allocated across

locales for a given program
— A locale is a unit of a distributed computer (processor
and memory)

e Users can distribute data with CHAPEL's
standard modules or create their own
distributions

 Distributions considered in this study

— Cyclic
— Block
— Block Cyclic

THE A. JAMES CLARK SCHOOL of ENGINEERING

il
m

11

Data Distributions in ‘ »
CHAPEL - Block

use BlockDist;

var domain = {1..15};

var distribution = domain dmapped Block(boundingBox=domain);
var A: [distribution] int;

/I A 'is now distributed in the following fashion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [Locale0

Al C T T T T T r 77T T s [Locale 1
I Locale 2

THE A. JAMES CLARK SCHOOL of ENGINEERING

12

Data Distributions in ‘ »
CHAPEL - Cyclic

use CyclicDist;

var domain = {1..15};

var distribution = domain dmapped Cyclic(startldx=domain.low);
var A: [distribution] int;

/I A 'is now distributed in the following fashion

1 2 3 45 6 7 8 9101 121314 15 [1 Locale0

ACT I T B T B T e [e [1 Locale 1
I Locale 2

THE A. JAMES CLARK SCHOOL of ENGINEERING

13

®

Data Distributions in
CHAPEL - Block Cyclic

use BlockCycDist;

var domain = {1..15};
var distribution = dom dmapped BlockCyclic(blocksize=3);

var A: [distribution] int;
/I A 'is now distributed in the following fashion

1 2 3 45 6 7 8 9101 121314 15 [1 Locale0

ACT T e 7 T | mammmm [Locale 1
B Locale?2

*similar code is used to distributed multi-dimensional
arrays

THE A. JAMES CLARK SCHOOL of ENGINEERING

14

Distributed Parallel ‘ “

Loop in CHAPEL

foralliin 1..10 do
Ali] = B[i+2];

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TS EE

I Locale 2

4 Messages
« Locale 1 - Locale 0 containing B[6]
Locale 1 - Locale 0 containing B[7]
Locale 2 = Locale 1 containing B[11]
Locale 2 - Locale 1 containing B[12]

THE A. JAMES CLARK SCHOOL of ENGINEERING

=

15

Data Communication in ‘ ®
CHAPEL can be Improved

* Locality check at each loop iteration
— Is B[i+2] local or remote?

Each message contains only 1 element

We could have aggregated messages

— Using GASNET strided get/put in CHAPEL
— Locale 1 - Locale 0 containing B[6], B[7]

— Locale 2 = Locale 1 containing B[11], B[12]

Growing problem

— Runtime increases for larger problems and
more complex data distributions

THE A. JAMES CLARK SCHOOL of ENGINEERING

16

How to improve this? ‘ f‘

« Use knowledge about how data is distributed
and loop access patterns to aggregate
messages and reduce runtime of affine
parallel loops

 We are not trying to
— Apply automatic parallelization to CHAPEL
— Come up with a new data distribution
— Bias or override the programmer to a particular
distribution
 We are trying to

— Improve CHAPEL'’s existing data distributions to
perform better than their current implementation

nﬂi
-
m THE A. JAMES CLARK SCHOOL of ENGINEERING

17

Modulo Unrolling — see Barua1999

* Method to statically disambiguate array
accesses at compile time

* Unroll the loop by factor = number of locales

« Each array access will reside on a single
locale across loop iterations

* Applicable for Cyclic and Block Cyclic

\l

| <
m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

18

Modulo Unrolling Example

for |-|n 1"99 { _ Each iteration of the loop
Ali] = Ali] + B[i+1]; accesses data on a
} different locale

1 23456 7 8 91011 121314 15 16 . Localed
A C T T - 0 Locale |
1 I Locale 2
B.[j:r_::_::_::_"' B Locale 3

m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

19

Modulo Unrolling Example

foriin 1..99 by 4 {

Ali] = Ali] + B[i+1];
Ali+1] = AJi+1] + B[i+2];
Ali+2] = A[i+2] + BJi+3];
A[i+3] = A[i+3] + BJ[i+4];

Loop unrolled by a factor of 4
automatically by the compiler

}
1 23 456 7 8 91011 1213 14 15 16 [Localed
A TN TN - D0 Locale |
I Locale 2
T T
B B Locale3

m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

Modulo Unrolling Example

foriin 1..99 by 4 {

Ali] = Ali] 1 B[i+1];
Ali+1] = A[i+1] + B
A[i+2] = A[i+2] + B
Ali+3] = A[i+3] + B

Chapel?

i+2];
i+3];
i+4];

20

Locale 0 Locvale 1 Locale 2 Locale 3
Al1], A[5], Al2], Al6], Al3], A[7], A4], A[8],
A9, ... A[10], ... A[11], ... A[12], ...
B[1], B[S], B[2], B[6], B3], B[7], B[4], B[8],
B9], ... B[10], ... B[11], ... B[12], ...

[1 LocaleO
1 Locale 1
B Locale 2
B Locale3

How do we apply this concept in

ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

21

CHAPEL Zippered ‘ '®
Iteration

« Can be used with parallel for loops

| eader iterator

— Creates tasks to implement parallelism and
assigns iterations to tasks

 Follower iterator

— Carries out work specified by leader (yielding
elements) usually serially

m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

22

CHAPEL Zippered ‘ '
Iteration

Follower iterators of A, B, and C will be
responsible for doing work for each task

forall (a, b, c) in zip(A, B, C) {
code...

}

Because it is first, A’'s leader iterator
will divide up the work among available tasks

*See Chamberlain2011
for more detail on leader/
follower semantics

m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

23

CHAPEL Zippered ®
Iteration |

* |t turns out any parallel forall loop with affine
array accesses can be written using zippered
iteration over array slices

forall iin 1..10 { forall (a,b) in zip(A[1..10], B[3..12]){
Ali] = B[i+2]; > a=b;
} Zippered iteration }

Implement modulo unrolling and message aggregation within
the leader and follower iterators of the Block Cyclic and Cyclic
distributions!

h ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

24

Modulo Unrolling in
CHAPEL Cyclic

:‘

Distribution
forall (a,b) in zip(A[1..10], B[3..12]) do

a=>b;

1 23 4 56 7 8 91011 1213 14 15 16 [Locale 0
A: [1 Locale1
5 I Locale 2

i —

\\JA u// o Locale 3

Leader iterator allocates locale 0 with

*if yielded elements are

Locale O
written to during the loop, a Ee:iatlons.s, 5; 9 fB , that it K
similar bulk put message is ollower i era or of B recognizes that its wor
3,7,11, ... is remote on locale 2

required to update remote

portions of array « Elements of B’s chunk of work brought to

locale 0 via 1 bulk get message to a local
buffer

« Elements of local buffer are now yielded back
to loop header

THE A. JAMES CLARK SCHOOL of ENGINEERING

Modulo Unrolling in P
CHAPEL Block Cyclic @ @
Distribution

forall (a,b) in zip(A[1..10], B[3..12]) do
a=b;

1 23 456 7 8 91011 121314 15 16 B Locale 0

: I - I
A|1|A| | T] 1 Locale 1
I Locale 2

B-LIT T T T TN [[[...
\// Bl Locale3

Aggregation now occurs with elements in the
Locale 0 same location within each block

Both leader and follower needed to be
modified

m THE A. JAMES CLARK SCHOOL of ENGINEERING

26

Outline

Introduction and Motivation
* Modulo Unrolling
* Optimized Cyclic and Block Cyclic Dists

 Results

N ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

Benchmarks f‘
el
Matrix mulitplication 16 x 16

cholesky 2D Cholesky decomposition 128 x 128

jacobi-2d 2D Jacobi relaxation 400 x 400

jacobi-1d 1D Jacobi relaxation 10000

stencil9 2D 9-point stencil calculation 400 x 400

folding 1D Sum consecutive elements of array N = 50400, 10 iterations

using strided access pattern

pascal 1D Computes rows of pascal’s triangle N1 = 10000, N2 = 10003
covariance 2D Covariance calculation 128 x 128
correlation 2D Correlation 64 x 64

* Data collected on 10 node Golgatha cluster at LTS

ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

Cyclic vs. Cyclic Modulo iy
Normalized Runtime ’ ‘ \)

' © 1.2
O
&
4 S On average 30%
3 T 08 decrease in
N -
N T 06 runtime
& E
o .
Z 04 ® Cyclic
GE, ® Cyclic Modulo
0.2
&
0

ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

Cyclic vs. Cyclic Modulo - "
Normalized Message ' ‘ \)

Counts

© 1.2

S

o 1-

S On average, 68%
*’ -§ 0.8 - ewer messages
3 £06

2 .

« 04 - yclic

§ ® Cyclic Modulo

0 0.2 -

Q

S

w 0 -

2]

= q,é‘@ B S 9 P & PO S

Block Cyclic vs. Block " 4
Cyclic Modulo ®

Normalized Runtime

1.2
S
n_on 1 - On average 52%
» o) decrease in
\\ 5 0.8 - runtime
N O
Tg“ 206 - ® Block Cyclic
s © m Block Cyclic Modulo
Z 04 -
© :
E
S 02 -
o
O -

pascal jacobi-1D geometric mean

ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

Block Cyclic vs. Block y
Cyclic Modulo Normalized' ‘ \\
Message Count

1.2

On average 72%
fewer messages

O
o

® Block Cyclic
® Block Cyclic Modulo

Block Cyclic
o
(@]

o
~

Message Count Normalized to

pascal jacobi-1D geometric mean

ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

32

®

« We've presented optimized Cyclic and Block Cyclic
distributions in CHAPEL that perform modulo
unrolling

« Our results for Cyclic Modulo and Block Cyclic
Modulo show improvements in runtime and message
counts for affine programs over existing distributions

Conclusion

\l

| <
m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

33

®

[1] Barua, R., & Lee, W. (1999). Maps: A Compiler-
Managed Memory System for Raw Machine.
Proceedings of the 26th International Symposium on
Computer Architecture, (pp. 4-15).

[2] User-Defined Parallel Zippered Iterators in Chapel,
Chamberlain, Choi, Deitz, Navarro; October 2011

[3] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen,

and C. Bastoul. The polyhedral model is more widely
applicable than you think. In ETAPS International

Conference on Compiler Construction (CC'2010),
pages 283-303, Mar. 2010.

-
m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

References

References ‘ “

[4] Compile-time techniques for data distribution in
distributed memory machines. J Ramanujam, P
Sadayappan - Parallel and Distributed Systems, IEEE
Transactions on, 1991

[5] Chen, Wei-Yu, Costin lancu, and Katherine Yelick.
"Communication optimizations for fine-grained UPC
applications." Parallel Architectures and Compilation
Techniques, 2005. PACT 2005. 14th International
Conference on. IEEE, 2005.

ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

Questions?

h ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

Backup Slides ‘ 0’ A\

h ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

37

CHAPEL Zippered ®
Iteration

* |terators
— Chapel construct similar to a function
— return or “yield” multiple values to the callsite
— Can be used in loops

iter fib(n: int) { for f in fib(5) {

var current = 0, writeln(f):
next = 1; >)
foriin1..n{ Being used in a loop

yield current; f is the next yielded

4=) :
current <_>next, | value of fib after each
current <=> next; iteration

}
) Output: 0, 1,1, 2, 3

ELECTRICAL and COMPUTER ENGINEERING DEPARTMENT

38

CHAPEL Zippered ‘ o’
Iteration -

Zippered lteration

— Multiple iterators of the same size are traversed
simultaneously

— Corresponding iterations processed together

for (i, f) in zip(1..5, f|b(5)){ Output
writeln(“Fibonacci ”, i, “ =7, f);

}

Fibonacci 1 =0
Fibonacci 2 = 1
Fibonacci 3 = 1
Fibonacci 4 = 2
Fibonacci 5 =3

m ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

39

What about Block?

®

2D Jacobi Example — Transformed Pseudocode

For each block in

forall (k1,k2) in {0..1, 0..1}{ parallel
if A[2 + 3k1, 2 + 3k2].locale.id == $ thenon $ {
buf_north = get(A[2+3k1..4+3k1, 2+3k2-1..4+3k2-1]); ~
buf_south = get(A[2+3k1..4+3k1, 2+3k2+1..4+3k2+1]);

v

buf_east = get(A[2+3k1-1..4+3k1-1, 2+3k2..4+3k2]); 4>Brin.g in remote

buf west = get(A[2+3k1+1..4+3k1+1, 2+3k2..4+3k2]); portions of array
— footprint locally

LB _i=2+3k1;

LB _j = 2+3k2;

forall(i, j) in {2+3k1..4+3k1, 2+3k2..4+3k2} {
A__[i,i] = (buf_north[i-LB_i, j-LB_j] + buf_south[i-LB_i, j-LB_j] +
buf_east[i-LB_i, j-LB_j] + buf_west[i-LB_i, j-LB_j])/4.0;

) } T Dothe

computation using
local buffers

ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

40

®

|t seems that data distributed using Block naturally
results in fewer messages for many benchmarks

 Makes sense because many benchmarks in
scientific computing access nearest neighbor
elements

* Nearest neighbor elements are more likely to reside
on the same locale

* Could we still do better and aggregate messages?

What about Block?

ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

41

What about Block? ‘ “

2D Jacobi Example 2 remote blocks per locale > 2 messages
i * 8 messages with aggregation
s e 24 messages without |
« Messages without aggregation grows as

1 2 3 45 67 8 problem size grows

12 [1 LocaleO
Jl 3 [Locale 1

4 I Locale 2

g B Locale3

/

8 Ali, j-1]

Ali-1, 11 A, j] |Ali+1,]]

forall (i,j) in {2..7, 2..7} {
Anenlii] = (Ali+1,] + Ali-1, j] + Afi, j+1] + Ali, j-1])/4.0;
} Ali, j+1]

m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

42

LTS Golgatha Cluster ‘ "
Hardware Specs

* 10 hardware nodes

* Infiniband communication layer between
nodes

« 2 sockets per node

* Intel Xeon X5760 per socket

— 2.93GHz

— 6 cores (12 hardware threads w/ 2 way
hyperthreading)

— 24GB RAM per processor

m ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

43

A

Data Transfer Round Trip ‘ F’
Time for Infiniband

3.5 —
3 — ’/

0 T T T T T 1
0 200 400 600 800 1000 1200

Data size (bytes)

m THE A. JAMES CLARK SCHOOL of ENGINEERING

44

Bandwidth measurements‘ "
for Infiniband

3500

&
3000
2500
@
Bandwidth 2000
(MB/s)

1500
1000 *
500 ‘/‘//’,
0 +”"
0 200 400 600 800 1000 1200

Data size (bytes)

m THE A. JAMES CLARK SCHOOL of ENGINEERING

45

Traditional Method — see Ramanujam1991

* Loop fission, fusion, interchange, peeling,
etc.

Software pipelining, scheduling, etc.

Pros

+ discovering parallelism

+ increasing the granularity of parallelism
+ improving cache performance

ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

46

Traditional Method — see Ramanujam1991

e Cons

- Code generation for message passing is
complex and limiting

- Needs
- Footprint calculations which can be modeled with matrix
calculations

- Intersections of footprint with data distributions = result in
irregular shaped which cannot be modeled with matrix
transformations

- Splitting footprints into portions per locale also complex and can't
be modeled with matrix transformations

- Real compilers limit aggregation to the simplest
of stencil codes

m ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

47

| Polyhedral Method — see Benabderrahmane2010

Boundaries traced for each array use of a
loop and intersected with the data distribution

Applied to block distributions

* Pros

+ Has mathematical framework to express parallelism
and find sequences of transformations in one step

+ Good at automatic parallelization and improves
parallelism, granularity of parallelism, and cache locality

e Cons

- Core polyhedral method does not compute information
for message passing code generation

- Uses ad hoc add-ons for message passing

ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

48

PGAS Methods — see Chen2005

 Redundancy elimination, split-phase
communication, communication coalescing

* Pros
+ eliminates the need for cross thread analysis
+ targets fine-grained communication in UPC
compiler

 Cons

- No locality analysis that statically determines
whether an access is shared or remote

ELECTRICAL 4nd COMPUTER ENGINEERING DEPARTMENT

What about Block? ‘ &’

* Our method does not help the Block
distribution

— Reason: Needs cyclic pattern

 For Block, we use the traditional method

m ELECTRICAL a#zd COMPUTER ENGINEERING DEPARTMENT

