
Welcome, Introduction to Chapel,
State of the Project

Brad Chamberlain, Chapel Team, Cray Inc.

CHIUW: Chapel Implementers and Users Workshop
May 23rd, 2014

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

 Safe Harbor Statement

Copyright 2014 Cray Inc.
2

What is Chapel?

3

● An emerging parallel programming language
●  Design and development led by Cray Inc.

●  in collaboration with academia, labs, industry

● Overall goal: Improve programmer productivity
●  Improve the programmability of parallel computers
●  Match or beat the performance of current programming models
●  Support better portability than current programming models
●  Improve the robustness of parallel codes

● A work-in-progress

Copyright 2014 Cray Inc.

Chapel's Implementation

4

● Being developed as open source at SourceForge

●  Licensed as BSD software

●  Target Architectures:
●  Cray architectures
●  multicore desktops and laptops
●  commodity clusters and the cloud
●  systems from other vendors
●  in-progress: CPU+accelerator hybrids, manycore, …

Copyright 2014 Cray Inc.

A Year in the Life of Chapel

Copyright 2014 Cray Inc.
5

●  Two major releases per year (April / October)
●  latest release: version 1.9, April 17, 2014
●  a month later: detailed release notes (new!)

●  version 1.9 release notes available now: http://chapel.cray.com/download.html

● SC activities (Nov)
●  Chapel tutorials (most years)
●  CHUG meet-up / happy hour (past four years)
●  lightning talks BoF (past three years)
●  educators forum (past two years)
●  talks, posters, emerging technology booth, etc. (when possible)

●  Talks, panels, tutorials, research visits, papers, blog
articles, … (year-round)

●  and now… CHIUW (May)

Welcome to CHIUW!

What is CHIUW?

Copyright 2014 Cray Inc.
7

CHIUW: Chapel Implementers and Users Workshop
●  Name chosen to complement CHUG (the Chapel Users Group)

Motivation:
●  Lots of things going on with Chapel

●  within Cray
●  across broader research community

●  Wanted to create a forum to share progress and discuss

Format:
●  backbone: technical talks submitted from Chapel community
●  networking during breaks and meals
●  fleshing things out: invited keynote talk, community/panel discussion

CHIUW 2014 Agenda

Copyright 2014 Cray Inc.
8

 8:30– 9:00 Welcome, Overview
 9:00–10:00 Technical Talks: Application Studies
10:00–10:30 Break
10:30–11:30 Technical Talks: Language Extensions
11:30–12:00 Technical Talks: Compiler Optimizations (pt 1)
12:00– 1:00 Lunch
 1:00– 1:45 Keynote: Walking to the Chapel, Robert Harrison
 1:45– 2:15 Technical Talks: Compiler Optimizations (pt 2)
 2:15– 3:15 Technical Talks: Runtime Improvements
 3:15– 3:30 Break
 3:30– 4:30 Community/Panel Discussion
 4:30– Dinner/Drinks

(Full agenda at http://chapel.cray.com/CHIUW.html)

CHIUW 2014 Talks and Speakers

(Full author lists and extended abstracts at http://chapel.cray.com/CHIUW.html)

Copyright 2014 Cray Inc.
9

User Experiences with a Chapel Implementation of UTS
Jens Breitbart, Technische Universität München

Evaluating Next Generation PGAS Languages for Computational Chemistry
Daniel Chavarria-Miranda, Pacific Northwest National Laboratory

Programmer-Guided Reliability in Chapel
David E. Bernholdt, Oak Ridge National Laboratory

Towards Interfaces for Chapel
Chris Wailes, Indiana University

Affine Loop Optimization using Modulo Unrolling in Chapel
Aroon Sharma, University of Maryland

LLVM Optimizations for PGAS Programs
Akihiro Hayashi, Rice University

Opportunities for Integrating Tasking and Communication Layers
Dylan T. Stark, Sandia National Laboratories

Caching in on Aggregation
Michael Ferguson, Laboratory for Telecommunication Sciences

CHIUW 2014 Steering Committee

Copyright 2014 Cray Inc.
10

● Brad Chamberlain (chair), Cray Inc.
● Richard Barrett, Sandia National Laboratories
●  Jens Breitbart, Technische Universität München
● Michael Ferguson, Laboratory for Telecommunication Sciences
● Rob Neely, Lawrence Livermore National Laboratory
● Vivek Sarkar, Rice University
●  Jeremy Siek, Indiana University
● Kenjiro Taura, University of Tokyo

In forming the committee, strived for a balance of…
●  developers and users
●  academics and lab employees
●  domestic and international

The Future of CHIUW

Copyright 2014 Cray Inc.
11

●  Intention is to make this an annual event

●  Format and setting are flexible based on interest
●  don’t change a thing?
●  same format, different activities?
●  multiple days with distinct user/implementer emphases?
●  coding camps for developers/users?
●  tutorials?

● Sometime today, please fill out survey to help tune CHIUW

●  Interested in chairing CHIUW 2015? Please let us know!

Outline For This Talk

Copyright 2014 Cray Inc.
12

ü Welcome / Context
Ø Chapel Overview
● Chapel Current Events

Chapel Overview

Chapel’s Origins: HPCS

Copyright 2014 Cray Inc.
14

DARPA HPCS: High Productivity Computing Systems
●  Goal: improve productivity by a factor of 10x
●  Timeframe: summer 2002 – fall 2012
●  Cray developed new system architecture, network, software, …

●  this became the very successful Cray XC30™ Supercomputer Series

 …and a new programming language: Chapel

Major Chapel Successes Under HPCS

Copyright 2014 Cray Inc.
15

● SSCA#2 demonstration on the prototype Cray XC30
●  unstructured graph compact application
●  clean separation of computation from data structure choices
●  fine-grain latency-hiding runtime
●  use of XC30’s network AMOs via Chapel’s ‘atomic’ types

● Clean, general parallel language design
●  unified data-, task-, concurrent-, nested-parallelism
●  distinct concepts for parallelism and locality
●  multiresolution language design philosophy

● Portable design and implementation
●  while still being able to take advantage of Cray-specific features

● Revitalization of Community Interest in Parallel Languages
●  HPF-disenchantment became interest, cautious optimism, enthusiasm

16

Multiresolution Design: Support multiple tiers of features
●  higher levels for programmability, productivity
●  lower levels for greater degrees of control

●  build the higher-level concepts in terms of the lower
●  permit the user to intermix layers arbitrarily

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2014 Cray Inc.

Multiresolution Design

17

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2014 Cray Inc.

Lower-Level Features

Lower-level Chapel

Sample Base Language Features

18

iter fibonacci(n) {
 var current = 0,
 next = 1;

 for i in 1..n {
 yield current;
 current += next;
 current <=> next;
 }
}

for f in fibonacci(7) do
 writeln(f);

0
1
1
2
3
5
8

Copyright 2014 Cray Inc.

Static Type Inference for:
•  arguments
•  return types
•  variables

Static Type Inference for:
•  arguments
•  return types
•  variables

Static Type Inference for:
•  arguments
•  return types
•  variables

CLU-style iterators CLU-style iterators

range types and
operators swap operator

Sample Task Parallel Feature: Coforall Loops

19

coforall t in 0..#numTasks { // coforalls create a task per iteration
 writeln(“Hello from task ”, t, “ of ”, numTasks);
} // its tasks implicitly join before execution proceeds

writeln(“All tasks done”);

Hello from task 2 of 4
Hello from task 0 of 4
Hello from task 3 of 4
Hello from task 1 of 4
All tasks done

Copyright 2014 Cray Inc.

Locality Features: Locales and on-clauses

20

var i: int;

Copyright 2014 Cray Inc.

Locales (think: “compute nodes”)

0

1

2

3

4

i

Locality Features: Locales and on-clauses

21

var i: int;
on Locales[1] {

Copyright 2014 Cray Inc.

0

1

2

3

4

i

Locality Features: Locales and on-clauses

22

var i: int;
on Locales[1] {
 var j: int;

Copyright 2014 Cray Inc.

0

1

2

3

4

i j

Locality Features: Locales and on-clauses

23

var i: int;
on Locales[1] {
 var j: int;
 coforall loc in Locales {
 on loc {

Copyright 2014 Cray Inc.

0

1

2

3

4

i j

Locality Features: Locales and on-clauses

24

var i: int;
on Locales[1] {
 var j: int;
 coforall loc in Locales {
 on loc {
 var k: int;

 // within this scope, i, j, and k can be referenced;
 // the implementation manages the communication for i and j
 }
 }
}

Copyright 2014 Cray Inc.

0

1

2

3

4

i j k k k k k

25

Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2014 Cray Inc.

Higher-Level Features

Higher-level Chapel

Domain Maps
Data Parallelism

LULESH: a DOE Proxy Application

26

Goal: Solve one octant of the spherical Sedov problem (blast
wave) using Lagrangian hydrodynamics for a single material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

Copyright 2014 Cray Inc.

LULESH in Chapel

Copyright 2014 Cray Inc.
27

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in Chapel v1.9 in examples/benchmarks/lulesh/*.chpl

LULESH in Chapel

1288 lines of source code
plus 266 lines of comments

487 blank lines

Copyright 2014 Cray Inc.
28

LULESH in Chapel

This is all of the representation dependent code.
It specifies:
•  data structure choices

•  structured vs. unstructured mesh
•  local vs. distributed data
•  sparse vs. dense materials arrays

•  a few supporting iterators

Copyright 2014 Cray Inc.
29

LULESH Data Structures (local)

Copyright 2014 Cray Inc.

Elems

Nodes

const Elems = {0..#numElems},
 Nodes = {0..#numNodes};

var determ: [Elems] real;

forall k in Elems { … }

No domain map specified ⇒ use default layout
•  current locale owns all indices and values
•  computation will execute using local processors only

30

LULESH Data Structures (distributed, block)

Copyright 2014 Cray Inc.

Elems

Nodes

const Elems = {0..#numElems} dmapped Block(…),
 Nodes = {0..#numNodes} dmapped Block(…);

var determ: [Elems] real;

forall k in Elems { … }

31

LULESH Data Structures (distributed, cyclic)

Copyright 2014 Cray Inc.

Elems

Nodes

const Elems = {0..#numElems} dmapped Cyclic(…),
 Nodes = {0..#numNodes} dmapped Cyclic(…);

var determ: [Elems] real;

forall k in Elems { … }

32

LULESH in Chapel

This is all of the representation dependent code.
It specifies:
•  data structure choices

•  structured vs. unstructured mesh
•  local vs. distributed data
•  sparse vs. dense materials arrays

•  a few supporting iterators

Domain maps play a key role in keeping the
science independent of these choices

Copyright 2014 Cray Inc.
33

Domain Maps and Multiresolution

34

● Domain maps are written in Chapel
●  by Chapel developers or end-users
●  using lower-level features

● All domains/arrays are implemented using this framework

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control

Copyright 2014 Cray Inc.

For More Information: Suggested Reading

Overview Papers:
●  The State of the Chapel Union [slides], Chamberlain, Choi, Dumler,

Hildebrandt, Iten, Litvinov, Titus. CUG 2013, May 2013.
●  a high-level overview of the project summarizing the HPCS period

●  A Brief Overview of Chapel, Chamberlain (pre-print of a chapter for A
Brief Overview of Parallel Programming Models, edited by Pavan
Balaji, to be published by MIT Press in 2014).
●  a more detailed overview of Chapel’s history, motivating themes, features

Blog Articles:

●  [Ten] Myths About Scalable Programming Languages, Chamberlain.
IEEE Technical Committee on Scalable Computing (TCSC) Blog,
(https://www.ieeetcsc.org/activities/blog/), April-November 2012.
●  a series of technical opinion pieces designed to rebut standard arguments

against the development of high-level parallel languages

Copyright 2014 Cray Inc.
35

For More Information: Online Resources

Chapel project page: http://chapel.cray.com
●  overview, papers, presentations, language spec, …

Chapel SourceForge page: https://sourceforge.net/projects/chapel/
●  release downloads, public mailing lists, code repository, …

Mailing Lists:
●  chapel_info@cray.com: contact the team at Cray
●  chapel-announce@lists.sourceforge.net: announcement list
●  chapel-users@lists.sourceforge.net: user-oriented discussion list
●  chapel-developers@lists.sourceforge.net: developer discussion
●  chapel-education@lists.sourceforge.net: educator discussion
●  chapel-bugs@lists.sourceforge.net: public bug forum

Copyright 2014 Cray Inc.
36

Chapel Headlines

(“current events that every Chapel enthusiast should be aware of”)

Chapel is Alive and Well!

Copyright 2014 Cray Inc.
38

● Based on positive customer response to Chapel under
HPCS, Cray is pursuing a five-year effort to improve it
●  the first year is drawing to a close

●  Focus Areas:
1.  Performance and scaling improvements

2.  Fixing broken aspects of the language / implementation
●  e.g., error handling, strings, RAII/memory model, …

3.  Portability to modern-era architectures
●  Intel Phi, accelerators, heterogeneous memories, …

4.  Interoperability

5.  Community development
●  including non-HPC communities

6.  Transition governance to neutral, external group

The Chapel Team at Cray has Doubled in Size!

Copyright 2014 Cray Inc.
39

● During HPCS, Chapel staffing was typically:
●  4-6 full-time engineers
●  a fraction of a manager’s time

● At present, the Cray Chapel team is composed of:
●  12 full-time engineers (6 here today)
●  a full-time manager (also here today)

Summer 2013

The Broader Chapel Community is also Growing!

Copyright 2014 Cray Inc.
40

(uptick in interest from industrial users/developers as well)

http://chapel.cray.com/collaborations.html

Everybody* Loves Chapel!

(but nobody will use it… yet)

Copyright 2014 Cray Inc.
41

Why is this?
1.  lack of compelling performance demonstrations

●  Chapel performance is currently hit-or-miss
●  In distributed memory environments, typically “miss”

2.  concern about long-term support / viability of a new language

3.  lack of maturity in some areas (features, implementation)

4.  insufficient interoperability features

* = well, OK, maybe just most people…

Performance is Improving!

Copyright 2014 Cray Inc.
42

These are execution time graphs – lower is better

Data points correspond to releases 1.5 – 1.9

Nightly Performance Graphs are Now Public!

Copyright 2014 Cray Inc.
43

● What this means:
●  You can stalk our performance changes over time
●  You can submit your own performance tests and monitor them
●  You can see the performance impacts of patches you commit

http://chapel.sourceforge.net/perf/

Chapel Language Shootout* Entry Underway!

Copyright 2014 Cray Inc.
44

* = ahem… The Computer Language
 Benchmarks Game
http://benchmarksgame.alioth.debian.org/

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

x
w

or
se

Chapel (v1.8) x worse than best reference

Chapel 1.8

Shootout Performance Summary (v1.8)

Copyright 2014 Cray Inc.
45

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

x
w

or
se

Chapel (v1.9) x worse than best reference

Chapel 1.9

Shootout Performance Summary (v1.9)

Copyright 2014 Cray Inc.
46

Multilocale Performance is also Improving!

Copyright 2014 Cray Inc.
47

(Performance graphs – higher is better)

0

0.5

1

1.5

2

2.5

3

3.5

1.7 release 1.8 release 1.9 release

A
dj

us
te

d
M

TE
PS

SSCA#2

ugni

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00

1.7
release

1.8
release

1.9
release

G
B

/s

STREAM Triad - Global

ugni

gn/mpi

gn/aries

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1.7
release

1.8
release

1.9
release

lo
g1

0(
up

da
te

s/
s)

HPCC RA using on

ugni, 10M updates

gn.mpi, 1M
updates

gn.aries, 1M
updates

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035
0.04

1.7 release 1.8 release 1.9 release
G

F/
s

HPCC FFT

ugni

Memory Leaks are Being Plugged!

Copyright 2014 Cray Inc.
48

Correctness Testing Now Public Too!

Copyright 2014 Cray Inc.
49

● Nightly regression tests sent to SourceForge mailing lists:
●  chapel-test-results-regressions@… the interesting results
●  chapel-test-results-all@... the complete results

● Also, working on transitioning testing to Jenkins
●  more holistic, integrated management of testing
●  better historical record of failure cases
●  http://jenkins-ci.org/

http://sourceforge.net/p/chapel/mailman/

Chapel Developers Join 21st Century?!

Copyright 2014 Cray Inc.
50

● Moving source base from SVN/SourceForge to git/GitHub

● Also, working on setting up…
●  issue tracking
●  task management
●  patch review framework
●  etc.

●  This effort is being led by Thomas Van Doren (here today)

Change to License/Contributor Agreement!

Copyright 2014 Cray Inc.
51

Historically:
●  License: BSD
●  Contributor Agreement: Cray-specific

Plan for version 1.10:
●  License: Apache
●  Contributor Agreement: Apache

Rationale:
●  BSD doesn’t have a contributor agreement
●  Cray agreement has been a stumbling block for some developers

http://www.apache.org/licenses/LICENSE-2.0.html

User-Defined Locale Models Now Available!

Copyright 2014 Cray Inc.
52

Traditionally:
●  Chapel’s locales were flat – no locality control within locales
●  Tasking and memory interfaces baked into the Chapel compiler

As of v1.8:

●  Locales may now contain sublocales
●  Users may write their own locale models using Chapel code
●  Tasking and memory interfaces defined via such Chapel modules

locale

locale

locale

locale

locale

locale

locale

locale

sub-locale
A

sub-locale B

sub-locale
A

sub-locale B

sub-locale
A

sub-locale B

sub-locale
A

sub-locale B
C C D E C C D E C C D E C C D E

Hierarchical
User-Defined

http://chapel.cray.com/presentations/KIISE-KOCSEA_HPC_Workshop2013.pdf
http://svn.code.sf.net/p/chapel/code/trunk/doc/release/technotes/README.localeModels

Chapel: An Exascale Programmer’s Dream?

Copyright 2014 Cray Inc.
53

● Consider an exascale programmer’s wishlist:
●  general types of parallelism

●  task parallelism to offload computations
●  data parallelism for SIMD execution
●  nested parallelism for composition

●  locality control
●  and distinct from parallelism

●  separation of concerns
●  algorithms from implementation (via domain maps, iterators)

●  portability to diverse / unknown hardware architectures
●  user-defined locale models

●  programmability features, to keep sane

● Hybrid models can do some of this…
●  But who wants to use a hybrid model?

● Main question: Can Chapel get far enough fast enough?
http://chapel.cray.com/presentations/ChapelForPADAL-distributeme.pdf
http://chapel.cray.com/presentations/ChapelForPGASX-presented.pdf

Chapel: It’s not just for HPC anymore!

Copyright 2014 Cray Inc.
54

●  “Big data” programmers want productive languages too
●  MapReduce, Pig, Hive, HBase have their place, but drawbacks too
●  Wouldn’t a general, locality-aware parallel language be nice here too?

● Chapel support for HDFS*: A first step
●  Developed by Tim Zakian (Indiana University) last summer
●  Returning this summer to take the next steps

● Questions:
●  What killer apps/demos to focus on?
●  What other non-HPC communities should we target?

http://chapel.cray.com/presentations/SC13/06-hdfs-ferguson.pdf
*HDFS = Hadoop Distributed File System

Chapel: Attractive for Education!

Copyright 2014 Cray Inc.
55

●  For some time now, we’ve made the following claim:

Chapel: Attractive for Education!

Copyright 2014 Cray Inc.
56

● And now, educators are making the argument for us:

http://chapel.cray.com/education.html

Interactive Chapel?!

Copyright 2014 Cray Inc.
57

● What if you could work with Chapel interactively:
chpl> var A: [1..n] real;
OK.
chpl> [i in 1..n] A = i / 2.0;
OK.
chpl> writeln(A);
0.5 1.0 1.5 2.0 2.5 3.0
chpl> proc foo(x) { x *= 2; }
OK.

●  What if this worked not only on your desktop, but by
offloading onto compute nodes as well:

chpl> var myLocales = getNodes(100);
OK.
chpl> var MyDist = new Block({1..1000000}, myLocales);
OK.

●  We’ve just started a study on such a capability

Working toward “The Chapel Foundation”!

Copyright 2014 Cray Inc.
58

●  If Chapel remains Cray-steered, its chances of succeeding
are much lower

●  The intention has always been to “turn it over to the
community” when it’s ready
●  finding the correct timing is tricky

● We’ve started the brainstorming process of what such a
model would look like (“The Chapel Foundation”)
●  membership roles
●  governance
●  funding models

●  If you have thoughts on this, we’re interested in them

What’s Next?

At Cray: Current Tasks

Copyright 2014 Cray Inc.
60

● Portability:
●  Support for Intel Phi

● Performance:
●  Performance analysis/optimization for NUMA architectures
●  Improved generation of C for loops (including parallelization pragmas)
●  Make Qthreads the default tasking layer
●  Make tcmalloc the default memory allocator
●  Enable processor-specific C back-end optimizations

●  Language/Library Features:
●  Improve strings
●  Improved memory management capabilities
●  Bit Operations library
●  Improve semantics for variables accessed within ‘forall’
●  Re-implement variable initialization and implement ‘noinit’

● Code Studies:
●  Wrap up and submit shootout entry
●  Improved support for stencil computations

Outside of Cray?

Copyright 2014 Cray Inc.
61

● What are you interested in working on?

and/or

● Stay tuned for the rest of the CHIUW talks…

Legal Disclaimer

Copyright 2014 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other
countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

62

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

