
USER EXPERIENCES WITH A
CHAPEL IMPLEMENTATION OF

UTS

Claudia Fohry

FG Programmiersprachen/-methodik

Universität Kassel

Jens Breitbart

Rechnertechnik und Rechnerorganisation /

Parallelrechnerarchitektur

TU München

1

WHY?

• Is Chapel easy to use?

• Which constructs work out well?

• Run through the learning process in Chapel

2

OVERVIEW

• UTS - What's that again?

• Our task pool

• Our implementation

• Wish list

• Conclusion

3

UTS

• Benchmark to study load balancing

• Extract nodes of a tree that is generated at runtime

• 1 task = extract all children of a node

• You'll need a task pool for that

• and that was our focus :-)

4

TASK POOL

• One global pool for multiple locales and worker

• Stealing in a round robin fashion

Private
Shared
 Private
Shared
 Private
Shared
 Private
Shared

locale 0
 locale 1
 locale 2
 locale 3

5

TASK POOL

• One global pool for multiple locales and workers

• Stealing in a round robin fashion

Shared/Private

locale 0

Shared/Private

locale 1

Shared/Private

locale 2

Shared/Private

locale 3

6

OVERALL STRUCTURE

• The implementation consists of 5 modules

• UTS: configurable tree constants

• Node: TreeNode ~ one task (record or class?)

• Pool: our distributed data structure and counters

• Thread: worker "main" function

7

OBJECT ORIENTATION

• The code we want:

var pool : TaskPool;

• The problem this code brings us:

 The object has to live on one locale

 ... and we probably can't cache it.

8

Taskpool

Distributed data

DISTRIBUTE FIRST?

• Distribute first gives less encapsulation

• A place local handle would help, but not solve the problem

9

Distributed array

Taskpool
 Taskpool
 Taskpool
 Taskpool

CLASS OR RECORD?

• Treenode as a record

• Pool one chunk of memory per locale

• Passing as a parameter involves copy

• Treenode as a class

• Includes an indirection

10

SYNCHRONIZATION

• The number of publicly available tasks is stored as a
synchronization variable

• We use it to rebuild a critical section

11

REDUCTION

• We need to reduce the final results

• Reduce requires a iterable data structure

• We implemented our own reduction

• I'd like a reduction variable, please

12

WISH LIST

• Local keyword for variables

• Predefined iterators ... maybe even one based on location of
the data?

• on (<set of locales>)

• replicated distribution on scalars

13

CONCLUSION

• Well, I was picky ... but it worked out well and was rather easy

• Source code is available at: https://www.uni-kassel.de/eecs/
fileadmin/datas/fb16/Fachgebiete/PLM/Dokumente/
Publications_Fohry/ppam13uts.tar.gz

14

https://www.uni-kassel.de/eecs/fileadmin/datas/fb16/Fachgebiete/PLM/Dokumente/Publications_Fohry/ppam13uts.tar.gz

