USER EXPERIENCES WITH A CHAPEL IMPLEMENTATION OF UTS

Claudia Fohry
FG Programmiersprachen/-methodik
Universität Kassel

Jens Breitbart
Rechnertechnik und Rechnerorganisation / Parallelrechnerarchitektur
TU München
WHY?

• Is Chapel easy to use?
• Which constructs work out well?
• Run through the learning process in Chapel
OVERVIEW

• UTS - What's that again?
• Our task pool
• Our implementation
• Wish list
• Conclusion
UTS

• Benchmark to study load balancing
• Extract nodes of a tree that is generated at runtime
• 1 task = extract all children of a node
• You'll need a task pool for that
 • and that was our focus :-)

• One global pool for multiple locales and worker

• Stealing in a round robin fashion
TASK POOL

- One global pool for multiple locales and workers
- Stealing in a round robin fashion
OVERALL STRUCTURE

• The implementation consists of 5 modules
 • UTS: configurable tree constants
 • Node: TreeNode ~ one task (record or class?)
 • Pool: our distributed data structure and counters
 • Thread: worker "main" function
• The code we want:

 var pool : TaskPool;

• The problem this code brings us:

 The object has to live on one locale
 ... and we probably can't cache it.
• Distribute first gives less encapsulation

• A place local handle would help, but not solve the problem
CLASS OR RECORD?

• Treenode as a record
 • Pool one chunk of memory per locale
 • Passing as a parameter involves copy
• Treenode as a class
 • Includes an indirection
SYNCHRONIZATION

• The number of publicly available tasks is stored as a synchronization variable

• We use it to rebuild a critical section
REDUCTION

• We need to reduce the final results
• Reduce requires a iterable data structure
• We implemented our own reduction
• I'd like a reduction variable, please
WISH LIST

• Local keyword for variables

• Predefined iterators ... maybe even one based on location of the data?

• on (<set of locales>)

• replicated distribution on scalars
CONCLUSION

• Well, I was picky ... but it worked out well and was rather easy

• Source code is available at: https://www.uni-kassel.de/eecs/fileadmin/datas/fb16/Fachgebiete/PLM/Dokumente/Publications_Fohry/ppam13uts.tar.gz