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PARALLEL COMPUTING IN A NUTSHELL

Parallel Computing: Using the processors and memories of multiple compute resources

e in order to run a program...
—faster than we could otherwise
—and/or using larger problem sizes
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PARALLEL COMPUTING HAS BECOME UBIQUITOUS

Traditional parallel computing: Today:
¢ supercomputers « multicore processors
o commodity clusters o GPUs

 cloud computing
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OAK RIDGE NATIONAL LABORATORY'S FRONTIER SUPERCOMPUTER
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* 74 HPE Cray EX cabinets

* 9,408 AMD CPUs, 37,632 AMD GPUs

1.1 exaflops of
performance.

* 700 petabytes of storage capacity,
peak write speeds of 5 terabytes
per second using Cray ClusterStor
storage system

* HPE Slingshot networking cables
providing 100 GB/s network
bandwidth.

: Source: May 30, 2022 Top500 release, HPL-MXP mixed-precision benchmark (formerly HPL-AD.

Built by HPE,

ORNL’s TDS and
full system are

ranked #2 & #6
on the Green500.

The
GREEN

500

Built by HPE,

ORNL’s Frontier
supercomputer
is #1 on the
HPL-MXxP list.



https://www.top500.org/
tps://hpl-mxp.org/

HPC BENCHMARKS USING CONVENTIONAL PROGRAMMING APPROACHES

STREAM TRIAD: C + MPI + OPENMP

#include <hpcc.h>
#ifdef OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI Comm .
MPI_Comm_

> &commSize );
comm, &myRank );

rv = HPCC_Stream( params, 0 == myRank);
MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm );

return errCount;
int HPCC_Stream(HPCC_ Params *params, int doIO) {
register int j;
double scalar;
VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 )
= HPCC_XMALLOC ( double, VectorSize )

a
b = HPCC_XMALLOC ( double, VectorSize )
c = HPCC_XMALLOC ( double, VectorSize )

—

;

if (ta || !'b [[ le) {
if (c) HPCC free(c);
if (b) HPCC free(b);
if (a) HPCC_free(a);

if (doIO) {

fprintf( outFile, "Failed to allocate memory (%d).\n",

fclose( outFile );

}

return 1;

#ifdef OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; Jj++)
bl3] 2.0;
c[j] = 1.0;

}

scalar = 3.0;

#ifdef OPENMP
#pragma omp parallel for
#endif
for
alj]

torSize; Jj++)
lar*c([j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return 0;

{

VectorSize );

HPCC RA: MPI KERNEL

/" Perform updates o main table. The scalar equivalent is

for (i=0; i<NUPDATE; i++) {
Ran = (Ran << 1) " (((s64Inf) Ran < 0) ? POLY : 0);
Table[Ran & (TABSIZE-1)] = Ran;

while (i < Send
/" receive messages */

== UPDATE_TAG)
sstatus, tparams.d

e = 0;

for (j=0; j < recvUpdates; j ++

i
} else if (statu:
NumberReceivin
} else
MPI_A

}
} while (have_don
if (pendingUpdat ingUpdates)
Ran = (Ran << 1) * ((s64Int) Ran < ZEROG4B ? POLY :
GlobalOffset = Ran & (tparams.TableSize-1);
if ( GlobalOffset < tparams.Top)
WhichPe = ( GlobalOffset / (tparams.MinLocalTableSize + 1) );
else
WhichPe = ( (GlobalOffset - tparams.Remainder) /
tparams.MinLocalTableSize );
if (WhichPe == tparams.MyP: {
LocalOffset = (Ran & (tp
tparar

Receiving > 0);

ZERO64B) ;

—

HPCC_InsertUpdate (Ran, WhichPe, Buckets);

pendingUpdates++;

utreq, &have_done, MPI_STATUS_IGNORI
if (have_done) (

MPI_REQUEST NULL;
GetUpdates (Buckets,

ocalSendBuffer, localBufferSize,

tpa (int)pe,

st

/" send remaining updaes in buckefs */
while (pendingUpdates > 0) (
/" receive messages ¥/
do

uffer [bufferBase+j];
(inmsg & (tparams.Table

ize - 1)) -
tparans.GlobalStartMyProc;

HPCC_Table[LocalOf

else if (status.MPI_TAG == FINISHED_TAG) {
/" we got a done message. Thanks for playing.../
NumberReceiving--;

} else {

while (have done && NumberReceiving > 0);

ckets, LocalSendBuffer, localBufferS
speUpdates) ;
i

C

ates, tp:

, &outr

pendingUpdates -= peUpdates.

)

/* send our done messages */

{ tparams.fin:

MPT_REQUEST NULL;

/* send garbage - who cares, no one will look at it */
Isend( 0 64

MPI_T aram

/" Finish everyone else up... /
while (NumberReceiving {

for (j=0; j < recvUpdates; j ++)
inmsg = LocalRecvBuffer [buf ferB,

+317

Local t = (inmsg & (tparams.TableSize - 1)) -
params.GlobalStartMyProc;
HPCC_Table[LocalOffset] *= inmsg;
)
} else if (status.MPI_TAG == FINISHED TAG) {

/* we got a done message. Thanks for playing../
NumberReceiving

} else {

inish_statuses);




SCALABLE PARALLEL PROGRAMMING THAT’S AS NICE AS PYTHON?

Imagine having a programming language for parallel computing that was as...
...programmable as Python

..yet also as...
...Fast as Fortran/C/C++
...scalable as MPI/SHMEM
...GPU-ready as CUDA/OpenMP/OpenCL/OpenACC/...
...portable as C
...fun as [your favorite programming language]

This is our motivation for Chapel
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WHAT IS CHAPEL?

Chapel: A modern parallel programming language

e portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

C

7



FIVE KEY CHARACTERISTICS OF CHAPEL

Ui rUNR

compiled: fo generate the best performance possible

statically typed: to avoid simple errors after hours of execution

interoperable: with C, Fortran, Python, ...

portable: runs on laptops, clusters, the cloud, supercomputers

open-source: to reduce barriers to adoption and leverage community contributions

8



OUTLINE

e What is
e Chapel B







FOR DESKTOP BENCHMARKS, CHAPEL IS COMPACT AND FAST
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(normalized to fastest entry)
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FOR DESKTOP BENCHMARKS, CHAPEL IS COMPACT AND FAST (ZOOMED)

Execution Time
(normalized to fastest entry)
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HPC BENCHMARKS: CONVENTIONAL APPROACHES VS. CHAPEL

|
1
STREAM TRIAD: C + MPI + OPENMP use BlockDist;
— - STREAM Performance (GB/s)
“ 15 : B0000 [~ ===
)] config const n = 1 000 000, MP1+OpenMP —%—
( alpha = 0.01; 25000 Cha%g?%%ggl - -
.ol const Dom = Block.createDomain({1l..n}); %) 20000 rommmmmm e A
*i"|var A, B, C: [Dom] real; @ 15000 frommmmmmmm e e
. 10000 - - e
in:‘:éggieit;;?;??cc Params *params, int doI0) { | B =] 2 . O ; 5000 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
s ms, 3, sizeof (double), 0 ); wc‘cjree; C = 1 . O; O (| (| 1 ]
m 1632 64 128 256
’ A =B + alpha * C; Locales (x 36 cores / locale)
|
HPCC RA: MPI KERNEL

RA Performance (GUPS)

forall ( , r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

GUPS

1

16 32 64 128 256
Locales (x 36 cores / locale)




APPLICATIONS OF CHAPEL

CHAMPS: 3D Unstructured CFD

Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.

Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

Tom Westerhout

Radboud University

Chapel-based Hydrologic;'lplodel Calibration

Marjan Asgari et al.
University of Guelph

—

Python3 Client m™ma Chapel Server

Socket

Code Modules
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Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

0 . : L =y
2010 2011 2012 2013 2014 2015
date

Nelson Luis Dias
The Federal University of Parand, Brazil

FEATURES ENSEMBLES
EX?LORATIONuPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance
PR D) d N L4

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

(images provided by their respective teams and used with permission)

Yale University et al.

[

. \,,_‘ |

lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

ChapQG: Layered Quasigeostrophic CFD
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LOCALES IN CHAPEL

e In Chapel, a locale refers to a compute resource with...

e processors, so it can run tasks
e memory, so it can store variables

e For now, think of each compute node as being a locale

Node O

Compute

_mm

Compute

Node 1

b

Compute

Node 2

[ ]Memory

Processor Core

Compute
Node 3
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KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Locale 1

dhe

0

[ ]Memory

Locale 2

oo

ooﬁﬁ

Processor Core
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BASIC FEATURES FOR LOCALITY

basics-on.chpl

writeln ("Hello from locale ", here.id);

var A: [1l..2, 1..2] real;

on Locales[1] {

var B: [1l..2, 1..2] real;

This is a serial, but distributed computation

All Chapel programs begin running
as a single task on locale O

Variables are stored using the
memory local to the current task

on-clauses move tasks
to other locales

remote variables can be
accessed directly

Locale O Locale 1

o

Locale 2

Locale 3

—

S

|18



BASIC FEATURES FOR LOCALITY

basics-for.chpl

writeln ("Hello from locale ", here.id);

var A: [1l..2, 1..2] real;

This loop will serially iterate over

for loc in Locales ({ the program’s locales

on loc {
var B = A;

}

This is also a serial, but distributed computation

T HTEH—E— =8




MIXING LOCALITY WITH TASK PARALLELISM

basics-coforall.chpl

var A: [1l..2, 1..2] real;

coforall loc in Locales {

on loc {
var B = A;

}

writeln ("Hello from locale ", here.

1d) ;

This results in a parallel distributed computation

The coforall loop creates

a parallel task per iteration

Locale O

Locale 1

Locale 2

o

L —

o

H—° E—

Locale 3

O

]

L]
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ARRAY-BASED PARALLELISM AND LOCALITY

basics-distarr.chpl

writeln ("Hello from locale ", here.id);
var A: [1l..2, 1..2] real;

use BlockDist;

var D = Block.createDomain ({1..2, 1..2}

var B: [D] real;
B = A;

They also result in parallel distributed computation

Chapel also supports distributed
domains (index sets) and arrays

Locale 1

S

Locale O

Locale 2

O

Al

Locale 3

L
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STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: n-element vectors A, B, C
Compute: Vi€ 1.n, A, =B, + a-C,

In pictures:

S A A
BT T TTTTTTTTITTTITTTTITTT]
+
COITTTTTTTTTTTTITTIITTITT]
o

— .



STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: n-element vectors A, B, C
Compute: Vi€ 1.n, A, =B, + a-C,

In pictures, in parallel (shared memory / multicore):

23



STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: n-element vectors A, B, C
Compute: Vi€ 1.n, A, =B, + a-C,

In pictures, in parallel (distributed memory):

— .



STREAM TRIAD: A TRIVIAL CASE OF PARALLELISM + LOCALITY

Given: n-element vectors A, B, C
Compute: Vi€ 1.n, A, =B, + a-C,

In pictures, in parallel (distributed memory multicore):

— .



STREAM TRIAD: SHARED MEMORY

stream-ep.chpl

config const n
alpha = 0.01;

= 1 000 000,

S
S

S

chpl stream-ep.chpl
./stream-ep
./stream-ep --n=10 --alpha=3.0

‘config’ declarations support

command-line overrides

compile the program

run with the default values

override those values
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STREAM TRIAD: SHARED MEMORY

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01;

declare three arrays of size ‘n’

var A, B, C: [l..n] real;

A =B + alpha * C; whole-array operations result in
parallel computation

So far, this is simply a multi-core program

Nothing refers to remote locales,

explicitly or implicitly




STREAM TRIAD: DISTRIBUTED MEMORY (EP VERSION)

stream-ep.chpl

alpha = 0.01;

coforall loc in Locales {
on loc {

config const n = 1 000 000,

AT [T
B [T T TT T

+ O+ 0+ o+
o e R
« @ | o

—

create a task per locale...

..running ‘on’ its locale

ar A, B, C: [l..n] real; .

v ! [ ) then run multi-core Stream
A =B + alpha * C;

} on local arrays, as before

28



STREAM TRIAD: DISTRIBUTED MEMORY (GLOBAL VERSION)

stream-glbl.chpl

config const n =
alpha

use BlockDist;

const Dom =

var A, B, C: [Dom]

A =B + alpha * C;

1 000 000,

= 0.01;

Block.createDomain
real;

({1..n}); ..and distributed arrays

these whole-array operations

will use all cores on all locales

S I O A

create a distributed domain (index set)...

'use’ the standard block-distribution module

29



HPC BENCHMARKS: CONVENTIONAL APPROACHES VS. CHAPEL

STREAM TRIAD: C + MPI + OPENMP

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

HPCC_Stream( params, 0
MPT_Reduce ( &rv, &errCount,

myRank) ;
, MPI_INT, MPI_SUM, 0, comm );

return errCount;

i

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorS

a = HPCC_XMALLOC( double, VectorSize );
£
£

b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );

—

ize( params, 3, sizeof (double), 0 );

use BlockDist;

config const n = 1 000 000,

alpha = 0.01;
const Dom = Block.createDomain({1l..n});
var A, B, C: [Dom] real;

B =2.0
c =1.0

B + alpha * C;

HPCC RA: MPI KERNEL

forall ( , r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r):;

r

GUPS

onNn A~ O

14

12 |

10

MP

STREAM Performance (GB/s)

1+OpenMP —¢—
Chapel EP —+—

Chapel Global - -+ -

64
Locales (x 36 cores / locale)

RA Performance (GUPS)

64 128
Locales (x 36 cores / locale)




STREAM TRIAD: MPI + OPENMP VS. CHAPEL

STREAM Performance (GB/s)
30000 -------c--c----mmeemmem——e———o—ooooo oo
MPI+OpenMP —%—

25000 Chapel EP —#— ~ - - -~ - - - - - - - - - - - - -
Chapel Global = -+ -

20000 - R e
15000 p------"""--mmmmmm o
10000 p------""-"-- e

BOOO p----- oo

GB/s

16 32 64 128 256
Locales (x 36 cores / locale)

— .



KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: What tasks should run simultaneously?

2. locality: Where should tasks run? Where should data be allocated?
« complicating matters, compute nodes now often have GPUs with their own processors and memory

Locale O

o

o

O

o

i

Locale 1

o

o

O

o

—

Locale 2

o

o

o

o

]

[ ]Memory

Processor Core

Locale 3

o

o

o

o
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KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

« complicating matters, compute nodes now often have GPUs with their own processors and memory
« we represent these as sub-locales in Chapel

Locale O Locale 1 Locale 2 Locale 3
| ] | | B

GPUO GPU1 GPUO GPU1 GPUO GPU1 GPUO GPU1
OO oo oo OO oo OO oo OO
R e oo o & OO o & OO o & OO
GPU 2 GPU3 GPU 2 GPU3 GPU 2 GPU3 GPU 2 GPU3
OO oo oo oo oo oo oo ﬁ OO
ok oo o & oo o & oo o & oo

Processor Core

[ ]Memory




OAK RIDGE NATIONAL LABORATORY'S FRONTIER SUPERCOMPUTER

- TOP500
% Q4K Riogr
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s e e | O S0 O S IS R R T Built by HPE, Built by HPE,
AMD O BR= ORNL’s TDS and ORNL'’s Frontier
full system are supercomputer
* 74 HPE Cray EX cabinets ranked #2 & #6 is #1 on the
0.408 c m on the Green500. HPL-MxP list.
* 9,408 AMD CPUs} 37,632 AMD GPUs
1.1 exafl f
* 700 petabytes of storage capacity, : fe)::] :ps -
peak write speeds of 5 terabytes perrormance.
per second using Cray ClusterStor
storage system
* HPE Slingshot networking cables .
GREEN

providing 100 GB/s network
bandwidth.

500

: Source: May 30, 2022 Top500 release, HPL-MXP mixed-precision benchmark (formerly HPL-AD. I 34
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STREAM TRIAD: DISTRIBUTED MEMORY, CPUS ONLY

stream-glbl.chpl

config const n = 1 000 000,
alpha = 0.01;

use BlockDist;

const Dom = Block.createDomain ({1l..n}):;
var A, B, C: [Dom] real;

A =B + alpha * C;

stream-ep.chpl

These programs are both CPU-only

Nothing refers to GPUs,
explicitly or implicitly

config const n = 1 000 000,
alpha = 0.01;

coforall loc in Locales {
on loc {

var A, B, C: [l..n] real;

A =B + alpha * C;

35



STREAM TRIAD: DISTRIBUTED MEMORY, GPUS ONLY

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01;

coforall loc in Locales {
on loc {

coforall gpu in here.gpus do on gpu {
var A, B, C: [l..n] real;
A =B + alpha * C;

Use a similar ‘coforall’ + ‘on’ idiom
to run a Triad concurrently
on each of this locale’s GPUs

This is a GPU-only program

Nothing other than coordination code
runs on the CPUs
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STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01; ‘cobegin { ... } creates a task

per child statement

coforall loc in Locales {
on loc {

cobegin {
coforall gpu in here.gpus do on gpu { one task runs our multi-GPU triad
var A, B, C: [l..n] real;

A =B + alpha * C;

var A, B, C- [ 1.. n] real; — The OTher runs The mUITl'CPU Triad

A =B + alpha * C;

} This program uses all CPUs and GPUs
} across all of our compute nodes

— .




STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS (REFACTOR)

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01;

coforall loc in Locales {
on loc {
cobegin {
coforall gpu in here.gpus do on gpu {
runTriad () ;

}

runTriad() ;

}

proc runTriad() {

}

—

we can also refactor the repeated
code info a procedure for re-use

var A, B, C: [l..n] real; the compiler creates CPU and GPU
A =B + alpha * C; versions of this procedure

|38



STREAM TRIAD: GPU PERFORMANCE VS. REFERENCE VERSIONS

o~ S_tie_am_(_ug_ng_N_Vl[_)l_A_BI)Efxg(_)QO_)___ Stream (using AMD Instinct MI100) »

800
-@- Chapel

200

- C+CUDA

Throughput
(GiB/s)
S 3
o o

Throughput
(GB/s)

100 ~®- 1.30 (1.29+Eager Load+LICM)
-M- 1.30 Prerelease (1.29+Eager Load) 200
-9 1.29
O ] 1 | O 1 1 |
32 64 128 32 64 128
Number of Elements (M) Number of Elements (M)

Performance vs. reference versions has become increasingly competitive over the past 4 months

— .






APPLICATIONS OF CHAPEL

CHAMPS: 3D Unstructured CFD

Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.

Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox

Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.
University of Guelph

—

Python3 Client ;’:‘0 Chapel Server

ket

t Distributed

Object Store
Platform

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead
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2010 2011 2012 2013 2014 2015
date

Desk dot chpl: Utilities for Environmental Eng.

Nelson Luis Dias
The Federal University of Parand, Brazil
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CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

(images provided by their respective teams and used with permission)

Yale University et al.
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lan Grooms and Scott Bachman
University of Colorado, Boulder et al.
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Your Application Here?

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

ChapQG: Layered Quasigeostrophic CFD
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CHAMPS SUMMARY

What is it?
e 3D unstructured CFD framework for airplane simulation
o ~85k lines of Chapel written from scratch in ~3 years

Who wrote it? |
« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal
S 4%y POLYTECHNIQUE SIntsasearmsetiaess

m- - MONTREAL

Why Chapel?
« performance and scalability competitive with MPI + C++
« students found it far more productive to use | Ao
« enabled them to compete with more established CFD centers _ i

:

bt
o
s =2
-+
4
4

EEETTT
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CHAMPS: EXCERPT FROM ERIC’S CHIUW 2021 KEYNOTE (TRANSCRIPT)

HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis (June 4, 2021)

“To show you what Chapel did in our lab... [our previous framework] ended up 120k lines.
And my students said, ‘We can't handle it anymore. It’s too complex, we lost track
of everything.” And today, they went from 120k lines to 48k lines, so 3x less.

But the code is not 2D, it’s 3D. And it’s not structured, it’s unstructured, which is way
more complex. And it’s multi-physics... So, Pve got industrial-type code in 48k lines.”

“[Chapel] promotes the programming efficiency ... We ask students at the master’s
degree to do stuff that would take 2 years and they do it in 3 months. So, if you

want to take a summer internship and you say, ‘program a new turbulence model,” well : f“;
they manage. And before, it was impossible to do.” R

POLYTECHNIQUE
MONTREAL

“So, for me, this is like the proof of the benefit of Chapel, plus the smiles | have on my students everyday in the lab
because they love Chapel as well. So that’s the key, that’s the takeaway.”

« Talk available online: https://youtu.be/wD-a KyB8al?t=1904 (hyperlink jumps to the section quoted here)

: (images provided by the CHAMPS team and used with permission) I 43



https://youtu.be/wD-a_KyB8aI?t=1904

APPLICATIONS OF CHAPEL

CHAMPS: 3D Unstructured CFD

Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.

Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

Tom Westerhout

Radboud University

Chapel-based Hydrologic;'lplodel Calibration

Marjan Asgari et al.
University of Guelph

—

apel Server

d
Socket

Code Modules E I

Python3 Client

Arithmetic

Distributed
Object Store

Platform P, SMP, Cluster, Laptop, etc.

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

0 =i : L =y
2010 2011 2012 2013 2014 2015
date

Nelson Luis Dias
The Federal University of Parand, Brazil

FEATURES ENSEMBLES
EX?'.ORATIONuPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

- ¥ g 2 P
RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

(images provided by their respective teams and used with permission)

Yale University et al.

[
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lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

ChapQG: Layered Quasigeostrophic CFD

VA



DATA SCIENCE INPYTHON AT SCALE?

Motivation: Imagine you've got...
...HPC-scale data science problems to solve
...a bunch of Python programmers

...access to HPC systems

———— 4

E%

] I

How will you leverage your Python programmers to get your work done?

— .



ARKOUDA: APYTHON FRAMEWORK FOR INTERACTIVE HPC

Arkouda Client Arkouda Server
_(written in Python) (written in Chapel)
- ~\
S —>
e
—

999999999999999999
9999999999999999

N

O User writes Python code in Jupyter,
ﬂ making familiar NumPy/Pandas calls
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ARKOUDA SUMMARY

What is it?
« A Python client-server framework supporting interactive supercomputing

— Computes massive-scale results (TB-scale arrays) within the human thought loop (seconds to a few minutes)
—Initial focus has been on a key subset of NumPy and Pandas for Data Science

o ~30k lines of Chapel + ~25k lines of Python, written since 2019
« Open-source: https://github.com/Bears-R-Us/arkouda

Arkouda Client Arkouda Server
Who wrote it? (written in Python)
« Mike Merrill, Bill Reus, et al., US DoD | S
6
Why Chapel?
e close to Pythonic
—enabled writing Arkouda rapidly T
—doesn’t repel Python users who look under the hood O useriinies Python code in Jupyter,
 achieved necessary performance and scalability (i) making NumPy/Pandas calls

« ability to develop on laptop, deploy on supercomputer

— .


https://github.com/Bears-R-Us/arkouda

SCALABILITY OF ARKOUDA'’S ARGSORT ROUTINE

HPE Cray EX (spring 2023) ¢=———g

114,688 cores of AMD Rome

Slingshot-11 network (200 Gb/s)

28 TiB of 8-byte values 1200
1200 GiB/s 1000

- 24 seconds elapsed time ” 800
0 600
HPE Apollo (summer 2021) ¢ O 400

e 73,728 cores of AMD Rome
e HDR Infiniband network (100 Gb/s)
o 72 TiB of 8-byte values
e 480 GiB/s
—2.5 minutes elapsed time

200

Arkouda Argsort Performance

SS-11 April 2023, 32 GiB/node —+—
= HDR-IB May 2021, 128 GiB/node —%— ~~~~~~ >~~~ "~~~

64 128 256 512 896
Nodes (128 cores/node)

A notable performance achievement in ~100 lines of Chapel

—

|48






THE CHAPEL TEAM AT HPE




SUMMARY

Chapel is unique among programming languages
« built-in features for scalable parallel computing make it HPC-ready
» supports clean, concise code relative to conventional approaches
» ports and scales from laptops to supercomputers
» targets GPUs in a vendor-neutral manner

Chapel is being used for productive parallel computing at scale
e users are reaping its benefits in practical, cutting-edge applications
« applicable to domains as diverse as physical simulations and data science

use BlockDist;

config const m = 1000, 30000

alpha = 3.0; 25000
const Dom = {1..m} dmapped ..; 20000
var A, B, C: [Dom] real;

B
C

2.0;
1155

A =B + alpha * C;

STREAM Performance (GB/s)

MMMMMMMMM

GB/s

15000
10000
5000

0 Il Il Il )
16 32 64 128 256
Locales (x 36 cores / locale)

Python3 Client MQ
et

If you or your users are interested in taking Chapel for a spin, let us know!
« we're happy to work with users and user groups to help ease the learning curve

—
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COMING UP: CHIUW 2023

( R

Home

What is Chapel?
What's New?

Blog

Upcoming Events
Job Opportunities

The Chapel Parallel Programming Language

CHIUW 2023

The 10th Annual
Chapel Implementers and Users Workshop

June 1-2, 2023
free and online in a virtual format

 What? The Chapel community’s annual workshop
» When? June 1-2

« one day of interactive programming
« one day of presentations

e Where? Online

e Cost? Free

—

Details at: hitps://chapel-lang.org/CHIUW2023.himl
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CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

C e The Chapel Parallel Programming Language
| [ =
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https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

SUMMARY

Chapel is unique among programming languages
« built-in features for scalable parallel computing make it HPC-ready
» supports clean, concise code relative to conventional approaches
» ports and scales from laptops to supercomputers
» targets GPUs in a vendor-neutral manner

Chapel is being used for productive parallel computing at scale
e users are reaping its benefits in practical, cutting-edge applications
« applicable to domains as diverse as physical simulations and data science

use BlockDist;

config const m = 1000, 30000

alpha = 3.0; 25000
const Dom = {1..m} dmapped ..; 20000
var A, B, C: [Dom] real;

B
C

2.0;
1155

A =B + alpha * C;

STREAM Performance (GB/s)

MMMMMMMMM

GB/s

15000
10000
5000

0 Il Il Il )
16 32 64 128 256
Locales (x 36 cores / locale)

Python3 Client MQ
et

If you or your users are interested in taking Chapel for a spin, let us know!
« we're happy to work with users and user groups to help ease the learning curve

—
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